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Foreword

The International System of Units (Système International d’Unités, SI) provides
the basis for internationally harmonized measurements that are indispensable
for scientific, economic, and social progress. The SI was established in the
Metre Convention, which was signed in 1875 and presently has 60 Signatory
States as well as 42 Associate States and Economies, who together represent
more than 97% of the world economy. It is thus the cornerstone of global trade
and quality infrastructure. Since 1875, the SI has been continuously advanced
by the organs of the Metre Convention: the General Conference on Weight
and Measures (Conférence Générale des Poids et Mesures, CGPM) and the
International Committee for Weights and Measures (Comité International des
Poids et Mesures, CIPM), including its Consultative Committee for Units (CCU)
and the International Bureau of Weights and Measures (Bureau International
des Poids et Mesures, BIPM), a scientific institute in Sèvres near Paris.
In 2018, the evolution of the SI took a quantum leap forward: in a landmark

decision in November 2018, the 26th CGPM voted to fundamentally revise the
SI by abandoning all physical artifacts, material properties, and measurement
descriptions used to date to define the kilogram/mole, the kelvin, and the ampere,
respectively.On20May 2019, the revised SI, which is defined by fixing the numer-
ical values of seven “defining constants,” will come into force. Among these are
fundamental constants such as the Planck constant, the speed of light in vacuum,
and the elementary charge, which together form the fine-structure constant 𝛼.
The units will thus be independent of space and time with a relative accuracy
below 10−17 per year, according to the state-of-the-art experiments on the con-
stancy of 𝛼. The revised SI guarantees long-term stability and realization of the
units anywhere in the known universe with ever-increasing accuracy as tech-
nology develops, thus opening the door to innovation in science, industry, and
technology.
This book provides a complete review of the revised SI. The definition of

units based on the defining constants is examined alongside the realization
of the units, which often incorporates the most recent progress in quantum
technologies. The book explains and illustrates the physics and technology
behind the definitions and their impact on measurements, emphasizing the
decisive role quantum metrology has played in the revision. It also reviews
what progress based on quantum metrology is anticipated. The book is thus
indispensable and highly topical – indeed, it is urgently needed in order to



x Foreword

communicate the background and consequences of the revised SI to the broad
scientific community and to other interested readers, including lecturers and
teachers.
The authors are well qualified for this undertaking. Both have extensive expe-

rience and an excellent track record in metrology: Ernst Göbel was president of
PTB, the national metrology institute of Germany, for more than 16 years. He
was also amember of the CIPM formore than 15 years and served as its president
from 2004 to 2010. Uwe Siegner joined the PTB in 1999, working onmetrological
applications of femtosecond laser technology and on electrical quantummetrol-
ogy. He has been the head of the electricity division of PTB since 2009. Both
authors are experienced university lecturers; in fact, this book is based on lectures
they have given at the Technische Universität Braunschweig.
I have studied the book with great interest and pleasure, and I wish the same to

a broad readership.

Braunschweig
November 2018

Prof. Dr. Joachim Ullrich
President of PTB, Vice President of CIPM,

President of the Consultative Committee for Units (CCU)
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Preface

The General Conference on Weights and Measures (Conférence Générale des
Poids et Mesures, CGPM) is the governing body of the Metre Convention. The
CGPM rules the International System of Units (Système International d’Unités),
the SI, which provides the basis for allmeasurementsworldwide. At its 26thmeet-
ing in November 2018, the CGPM decided that all SI units would be based on
seven “defining constants,” among them fundamental constants of nature, such
as the Planck constant, the speed of light in vacuum, and the elementary charge.
To a significant extent, quantummetrology has provided the scientific foundation
for this revolutionary change of the system of measurement units.The essence of
quantum metrology is to base measurements on counting of discrete quanta.
The concept of some indivisible discrete single particles that are the basic build-

ing blocks of all matter goes back to philosophers many centuries BCE. In partic-
ular, the Greek philosopherDemokrit and his students specified the idea of atoms
(from the Greek àtomos) as the base elements of all matter.
These concepts found support in natural science beginning in the eighteenth

century. This was particularly driven by chemistry (e.g. A. Lavoisier, J. Dalton,
and D. Mendeleev), kinetic gas theory (e.g. J. Loschmidt and A. Avogadro), and
statistical physics (e.g. J. Stefan, L. Boltzmann, and A. Einstein).
The discovery of the electron by J.J. Thomson (1897) and the results of the

scattering experiments by J. Rutherford and his coworkers (1909) opened a new
era in physics, based on their conclusions that atoms are not indivisible but
instead composite species. In the atomic model developed by N. Bohr in 1913,
the atom consists of electrons carrying a negative elementary charge (−e) and a
tiny nucleus which carries almost all the mass of an atom composed of positively
charged (+e) protons and electrically neutral neutrons. In Bohr’s model, the
electrons in an atom can only occupy discrete energy levels, consistent with the
experimental findings of atomic spectroscopy.
In the standardmodel of modern particle physics, electrons are in fact elemen-

tary particles belonging to the group of leptons. Protons and neutrons are com-
posite particles composed of fractionally charged elementary particles, named
quarks, which are bound together by the strong force.
In the last 50 years or so, scientists have learned to handle single quantum

objects, for example, atoms, ions, electrons, and Cooper pairs, not least due to
the tremendous progress in laser physics and nanotechnology. This progress has
also laid the base for “quantummetrology.”The paradigm of quantummetrology
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is to base measurements on the counting of discrete quanta (e.g. charge or mag-
netic flux quanta). In contrast, in classical metrology, the values of continuous
variables are determined. Proceeding from classical to quantum metrology, the
measurement of real numbers is replaced by counting of integers.
The progress in quantummetrology stimulated the discussion about a revision

of the SI more than 10 years ago. In particular, it was recognized early on that
quantum metrology would allow a new definition of the base units of the SI in
terms of constants of nature. This concept was implemented by the decision of
the CGPM in November 2018 to revise the SI and to base it on seven defining
constants.This book describes this new SI, which will be used from 20May 2019,
its definitions and the underlying physics and technology.
The discrete nature of a physical system is sometimes obvious, for example,

by counting cycles when microwave or optical transitions between discrete
energy states in atoms or ions are considered. The discrete quantum character
of solid-state systems is less obvious because their single-particle energy spectra
are quasi-continuous energy bands. Discrete quantum entities can then result
from collective effects called macroscopic quantum effects.
The paradigm of quantum metrology becomes particularly obvious when the

new definition of the electrical units (ampere, volt, and ohm) is considered. We,
therefore, give a more comprehensive description of the underlying solid-state
physics and the relevant macroscopic quantum effects. For example, we partly
summarize the textbook knowledge and deduce results starting from general
principles in Chapter 4 where we introduce superconductivity, the Josephson
effect, and quantum interference phenomena in superconductors.
This book addresses advanced students, research workers, scientists, practi-

tioners, and professionals in the field of modern metrology as well as a general
readership interested in the foundations of the new SI definition. However, we
consider this book as an overview that shall not cover all subjects in the same
detail as it covers the electrical units. For further reading, we refer to the respec-
tive literature.
This book is based on the previous book by the same authors “Quantum

Metrology: Foundation of Units and Measurements,” however, reorganized and
revised by including the final wording of the new SI definitions and the final
values of the defining constants as decided by the 26th CGPM. The differences
between the previous and the present SI are highlighted. Further, the individual
chapters are updated by including latest results and progress.
This book would not have been possible without the support of many col-

leagues and friends. We would like to especially mention Stephen Cundiff (JILA,
now University of Michigan), Wolfgang Elsäßer (University of Darmstadt), Peter
Michler (University Stuttgart), and Alfred Leitenstorfer (University Konstanz)
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as well as our PTB colleagues Franz Ahlers, Peter Becker, Ralf Behr, Bernd
Fellmuth, Joachim Fischer, Christian Hahn, Frank Hohls, Oliver Kieler, Johannes
Kohlmann, Stefan Kück, Andre Müller, Ekkehard Peik, Klaus Pierz, Hansjörg
Scherer, Piet Schmidt, Sibylle Sievers, Lutz Trahms, StephanWeyers, and Robert
Wynands. We are also grateful for the technical support provided by Alberto
Parra del Riego and Jens Simon. We further acknowledge the support of the
Wiley-VCH staff members.

Braunschweig
December 2018

ErnstO.Göbel andUwe Siegner
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1

Introduction

Metrology is the science of measurement including all theoretical and experi-
mental aspects, in particular, the experimental and theoretical investigations of
uncertainties in measurement results. According to Nobel Prize Winner J. Hall,
“metrology truly is the mother of science” [1].
Metrology is almost as old as humankind. When people began to exchange

goods, they had to agree on commonly accepted standards as a base for their
trade. Indeed, many of the ancient cultures such as China, India, Egypt, Greece,
and the Roman Empire had a highly developed measurement infrastructure.
Examples are the Nippur cubit from the third millennium bce found in the
ruins of a temple in Mesopotamia and now exhibited in the archeology museum
in Istanbul and the famous Egyptian royal cubit as the base length unit for
the construction of pyramids. However, the culture of metrology faded during
the Middle Ages when many different standards were in use. In Germany, for
instance, at the end of the eighteenth century, 50 different standards for mass and
more than 30 standards for length were used in different parts of the country.
This, of course, had been a barrier to trade and led to abuse and fraud. It was then
during the French Revolution that the French Académie des Sciences took the
initiative to define standards independent of the measures taken from the limbs
of royal representatives. Instead, their intent was to base the standards on stable
quantities of nature available for everyone at all times. Consequently, in 1799,
the standard for length was defined as the ten millionth part of the quadrant of
the earth, and a platinum bar was fabricated to represent this standard (Mètre
des Archives). Subsequently, the kilogram, the standard of mass, was defined
as the mass of one cubic decimeter of pure water at the temperature of its
highest density at 3.98 ∘C. This can be seen as the birth of the metric system,
which, however, at that time was not generally accepted through Europe or
even in France. It was only with the signature of the Metre Convention in 1875
by 17 signatory countries that the metric system based on the meter and the
kilogram received wider acceptance [2]. At the time of this writing, the Metre
Convention was signed by 60 states with another 42 states being associated with
the General Conference on Weights and Measures (Conférence Générale des
Poids et Mesures, CGPM) (as of November 2018). At the General Conferences,
following the first one in 1889, the system of units was continuously extended.
Finally, at the 11th CGPM in 1960, the previous SI (Système International

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

d’Unités) (see Section 2.2) with the kilogram, second, meter, ampere, kelvin, and
candela as base units was defined. The mole, unit of amount of substance, was
added at the 14th CGPM in 1971. Within the SI, the definition of some units
has been adopted according to progress in science and technology; for example,
the meter was defined in 1960 based on the wavelength of a specific emission
line of the noble gas krypton. But then, in 1983, it was replaced by the distance
light travels in a given time and by assigning a fixed value to the speed of light in
vacuum. Similarly, the second, originally defined as the ephemeris second, was
changed by the 13th CGPM and defined via an electronic transition in the Cs
isotope 133. Thus, in the previous SI, the meter and the second were defined by
constants of nature. In the present revised SI, as accepted by the 26th CGPM
in 2018, all units are based on constants of nature [3–7]. In fact, in this context,
single quanta physics has a decisive role as will be outlined in this book.
We shall begin with introducing some basic principles of metrology in

Chapter 2. We start in Section 2.1 by repeating some basic facts related to
measurement and discuss the limitations for measurement uncertainty. The
present SI is then presented in Section 2.2. The previous definitions of the
respective units are also given for comparison.
Chapter 3 treats the realization of the present definition of the second employ-

ing atomic clocks based on the hyperfine transition in the ground state of 133Cs
applying thermal beams and laser-cooled atoms, respectively.
Chapter 4 is devoted to superconductivity and its utilization in metrology.

Because of its prominent role for electrical metrology, we introduce super-
conductivity, the Josephson effect, magnetic flux quantization, and quantum
interference. By means of the Josephson effect, the volt (the unit for the electrical
potential difference) is traced back to the Planck constant and the elementary
charge as realized in today’s most precise voltage standards. We further discuss
magnetic flux quantization and quantum interference allowing the realization of
quantum magnetometers (superconducting quantum interference devices) with
unprecedented resolution and precision.
The underlying solid-state physics and the metrological application of the

quantum Hall effect are discussed in Chapter 5. In the present SI, the unit of
electric resistance, ohm, is traced back to the Planck constant and the elementary
charge by the quantum Hall effect.
In Chapter 6, we describe the physics of single-electron transport devices,

which allow the realization of the unit of electric current, the ampere, according
to its present definition based on the elementary charge and frequency. We
further discuss the so-called metrological triangle experiment aimed to prove
the consistency of the present realizations of the volt, ampere, and ohm.
Chapter 7 is then devoted to the present definition of the kilogram and the

mole based on, respectively, the Planck constant and the Avogadro constant.
We present the Kibble balance and the silicon single-crystal experiment, which
have been seminal for the precise determination of the Planck constant and are
now primary realizations of the kilogram replacing the International Kilogram
Prototype (IKP).
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Various experiments that have contributed to the precise determination of the
value of the Boltzmann constant and that are potential realizations of the unit of
thermodynamic temperature, kelvin, are described in Chapter 8.
In Chapter 9, we take an even further look into the future of the SI whenwe dis-

cuss optical clocks, whichmay in due time cause a change of the defining constant
for the unit of time, the second, resulting in an improved realization. Further,
we discuss the prospect of single-photon emitters for a possible new definition
of radiometric and photometric quantities, for example, for (spectral) irradiance
and luminous intensity.
In an outlook in Chapter 10, we finally discuss a few examples how the present

definitions of the SI pave the way to bring quantum metrology and quantum
technology to the “workbench,” thereby considerably improving the quality of
measurements for industry, science, and society.
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2

Some Basics

2.1 Measurement

Measurement is a physical process to determine the value or magnitude of a
quantity. The quantity value can be calculated as follows:

Q = {q} ⋅ [Q] (2.1)

where {q} is the numerical value and [Q] the unit (see Section 2.2). The unit is
thus simply a particular example of a quantity value. Equation (2.1) also applies
for Q being a constant. If the numerical value of a constant is fixed, it defines
the unit because their product must be equal to the quantity value, Q. This is the
underlying concept of the present SI.
Repeated measurements of the same quantity, however, will generally result

in slightly different results. In addition, systematic effects that impact the
measurement result must be considered. Thus, any measurement result must
be completed by an uncertainty statement. This measurement uncertainty
quantifies the dispersion of quantity values being attributed to a measurand,
based on the information used. Measurement uncertainty comprises, in general,
many components. Some of the components may be evaluated by type A
evaluation of measurement uncertainty from the statistical distribution of
quantity values from a series of measurements and can be characterized by
standard deviations. The other components, which may be evaluated by type B
evaluation of measurement uncertainty, can also be characterized by standard
deviations, evaluated from probability density functions based on experience
or other information. For the evaluation of uncertainties in measurements, an
international agreed guide has been published jointly by ISO and the Bureau
International des Poids et Mesures (BIPM), the Guide to the Expression of
Uncertainty in Measurement (GUM) [1–3]. Generally, precision measurements
are those with smallest measurement uncertainty.

2.1.1 Limitations of Measurement Uncertainty

One might tend to believe that measurement uncertainty can be continuously
decreased as more efforts are put in the respective experiment. However, this is
not the case since there are fundamental as well as practical limitations for mea-
surement precision. The fundamental limit is a consequence of the Heisenberg

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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uncertainty principle of quantum mechanics, and the major practical limit is
due to noise.

2.1.1.1 The Fundamental Quantum Limit
Note that throughout this book, we use the letter f to denote technical frequen-
cies and the Greek letter 𝜈 to denote optical frequencies.
The Heisenberg uncertainty principle is a fundamental consequence of quan-

tum mechanics stating that there is a minimum value for the physical quantity
action, H :

Hmin ≈ h (2.2)

where h is the Planck constant. Action has the dimensions of energy multiplied
by time and its unit is joule seconds. From the Heisenberg uncertainty principle,
it follows that conjugated variables, such as position andmomentum or time and
energy, cannot be measured with ultimate precision at a time. For example, ifΔx
andΔp are the standard deviation for position, x, andmomentum, p, respectively,
the inequality relation holds (ℏ = h/2𝜋):

ΔxΔp ≥
1
2
ℏ (2.3)

Applied to measurement, the argument is as follows: during a measurement,
information is exchanged between the measurement system and the system
under consideration. Related to this is an energy exchange. For a given measure-
ment time, 𝜏 , or bandwidth of the measurement system, Δf = 1/𝜏 , the energy
extracted from the system is limited according to Eq. (2.2) [4]:

Emin ⋅ 𝜏 =
Emin

Δf
≈ h (2.4)

Let us now consider, for example, the relation between inductance, L, and,
respectively, magnetic flux,Φ, and current, I (see Figure 2.1).The energy is given
by E = (1/2)LI2 = (1/2)(Φ2/L), and consequently,

Imin ≈
√

2h
𝜏 ⋅ L

; Φmin ≈
√

2h ⋅ L
𝜏

(2.5)

These relations are also depicted in Figure 2.1. The gray area corresponds
to the regime that is accessible by measurement. Note that this is a heuristic
approach that does not consider a specific experiment. Nevertheless, it may
provide useful conclusions on how to optimize an experiment. For instance, if
an ideal coil (without losses) is applied to measure a small current, inductance
should be large (e.g. L = 1 H, 𝜏 = 1 s, and then Imin = 3.5× 10−17 A). If instead
the coil is applied to measure magnetic flux, L should be small (e.g. L = 10−10 H,
𝜏 = 1 s, and then Φmin = 4× 10−22 V s = 2× 10−7 ×Φ0, where Φ0 = h/2e is the
flux quantum = 2.067× 10−15 V s).
Similarly, for a capacitor with capacitance, C, the energy is given by

E = 1
2
Q2∕C = 1

2
U2 ⋅ C (2.6)
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Components Quantum limit

Electrical current, I Magnetic flux, Φ

Imin ≈

Imin

I0

I0 = e / τ ; L0 = 2τh / e2 Φ0 = h / 2e ; L′0 = (τ / 8)h / e2

L′0 L
0

Φ0

Φmin

L0 L
0

2h 1

Lτ
Φmin ≈

2h
L

τ

Inductance

L

L I

Φ

Figure 2.1 Components and quantities considered (left) and the minimum current, Imin, and
the minimummagnetic flux,Φmin, versus inductance, L, for an ideal coil. Source: Kose and
Melchert 1991 [4]. Reproduced with permission of John Wiley and Sons.

and thus,

Qmin ≈
√

2h ⋅ C
𝜏

; Umin ≈
√

2h
𝜏 ⋅ C

. (2.7)

Finally, for a resistor with resistance, R, the energy is given by

E = I2 ⋅ R ⋅ 𝜏 = U2

R
⋅ 𝜏 (2.8)

and thus, for the minimum current and voltage, respectively, we obtain

Imin ≈
1
𝜏

⋅

√
h
R
; Umin ≈

1
𝜏

⋅
√
h ⋅ R (2.9)

2.1.1.2 Noise
In this chapter, we briefly summarize some aspects of noise theory. For a more
detailed treatment of this important and fundamental topic, the reader is referred
to, for example, [5].
Noise limits the measurement precision in most practical cases. The noise

power spectral density, P(T , f )/Δf , can be approximated by (Planck formula)
P(T , f )
Δf

= h ⋅ f +
h ⋅ f

ehf∕kT − 1
(2.10)

where f is the frequency, k the Boltzmann constant, and T the temperature. Two
limiting cases can be considered as follows.

(i) Thermal noise (Johnson noise) (kT≫ hf):
Pth(T)
Δf

= k ⋅ T (2.11)

According to this “Nyquist relation,” the thermal noise power spectral den-
sity is independent of frequency (white noise) and increases linearly with
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temperature. Thermal noise was first studied by Johnson [6]. It reflects the
thermal agitation of, for example, carriers (electrons) in a resistor.

(ii) Quantum noise (hf≫ kT):
Pqu(f )
Δf

= h ⋅ f (2.12)

The quantum noise power spectral density in this limit is determined by the
zero point energy, hf , and is independent of temperature and increases lin-
early with frequency.
Thermal noise dominates at high temperatures and low frequencies (see
Figure 2.2). The transition frequency, f c(T), where both contributions are
equal depends on temperature and is given by

fc(T) =
kT
h

⋅ ln 2 (2.13)

This transition frequency amounts to 4.3 THz at T = 300K and 60.6GHz at
the temperature of liquid He at T = 4.2 K.
The thermal noise in an electrical resistor at temperature T generates under
open circuit or short circuit, respectively, a voltage or current with effective
values:

Ueff =

√⟨u2(t)⟩
Δf

=
√
4kT ⋅ R (2.14)

Ieff =

√⟨i2(t)⟩
Δf

=
√

4kT∕R (2.15)

To reduce thermal noise, the detector equipment should be cooled to low
temperatures. Decreasing the temperature from room temperature (300K)

10−15
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10−27

10−30

1 103 106

Pth (T) / Δf

Thermal noise

T = 300 K

T = 4.2 K

T = 0.4 K

Quantum
noise

PQu (f) / Δf

P
(T

, 
f)

 /
 Δ

f
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109 1012 1015 1018Hz

Figure 2.2 Noise power spectral density, P(T ,f )/Δf , versus frequency for different
temperatures. Source: Kose and Melchert 1991 [4]. Reproduced with permission of John Wiley
and Sons.
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to liquid He temperature (4.2 K) reduces the thermal noise power by a factor
of about 70. In addition, both thermal and quantum noise can be reduced by
reducing the bandwidth, that is, by integrating over longer times, 𝜏 . This,
however, requires stable conditions during the measurement time, 𝜏 . Unfor-
tunately, however, other noises may be observed such as shot noise and at
low frequencies the so-called 1/f noise.

(iii) Shot noise: Shot noise originates from the discrete nature of the species
carrying energy (e.g., electrons, photons). It was first discovered by
Schottky [7] when studying the fluctuations of current in vacuum tubes.
Shot noise is observed when the number of particles is small such that
the statistical nature describing the occurrence of independent random
events is described by the Poisson distribution. The Poisson distribution
transforms into a normal (Gaussian) distribution as the number of particles
increases. At low frequencies, shot noise is white; that is, the noise spectral
density is independent of frequency and, in contrast to thermal noise, also
independent of temperature. The shot noise spectral density of an electric
current, Sel, at sufficiently low frequencies is given by

Sel = 2eI (2.16)

where I is the average current. Similarly, for a monochromatic photon flux,
we have the shot noise spectral density of photon flux, Sopt,

Sopt = 2h𝜈P (2.17)

where h𝜈 is the photon energy and P the average power.
(iv) Low-frequency noise (1/f noise): 1/f noise (sometimes also called pink noise

or flicker noise) occurs widely in nature but might have quite different ori-
gins. More precisely, the relation between noise power spectral density and
frequency is often given by

P(f )
Δf

∝ 1∕f 𝛽 (0.5 ≤ 𝛽 ≤ 2) (2.18)

with 𝛽 usually close to 1. In contrast to thermal or quantum noise, the noise
power of 1/f noise decreases with increasing frequency (by 3 dB per octave
of frequency). Figure 2.3 shows, for example, the noise power spectral den-
sity measured for a superconducting quantum interference device (SQUID)
magnetometer versus frequency.

2.2 The SI (Système International d’Unités)

According to the decision of the 26th meeting of the Conférence Générale des
Poids et Mesures (CGPM), the present system of units is set up by seven defining
constants, namely, the frequency of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium 133 atom
(Δ𝜈Cs), the Planck constant (h), the velocity of light in vacuum (c), the elementary
charge (e), the Boltzmann constant (k), the Avogadro constant (NA), and the
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Figure 2.3 Noise power spectral density as measured for a SQUID magnetometer versus
frequency. Source: Kose and Melchert 1991 [4]. Reproduced with permission of JohnWiley and
Sons.

luminous efficacy of monochromatic radiation of frequency 540× 1012 Hz
(K cd) [8].
The respective wording together with the numerical values of the defining con-

stants based on the 2017 CODATA evaluation [9, 10] is presented in the recent
edition of the SI brochure [11] and it reads as follows:

The International System of Units, the SI, is the system of units in which

• the unperturbed ground state hyperfine transition frequency of the
caesium 133 atom Δ𝜈Cs is 9 192 631 770Hz,

• the speed of light in vacuum c is 299 792 458m/s,
• the Planck constant h is 6.626 070 15× 10−34 J s,
• the elementary charge e is 1.602 176 634× 10−19 C,
• the Boltzmann constant k is 1.380 649× 10−23 J/K,
• the Avogadro constant NA is 6.022 140 76× 1023 mol−1,
• the luminous efficacy of monochromatic radiation of frequency

540× 1012 hertz K cd is 683 lm/W.

These seven constants set the scale of the entire SI (Figure 2.4), and they are
all needed to fully define it. These numerical values do not exhibit uncertainty
and have been chosen to ensure continuity between the previous and present SI.
These definitions of the present SI disconnect the definition of a unit from its real-
ization, thus leaving room for improved realizations as science and technology
advance. The nature of the constants is quite different, ranging from fundamen-
tal constants such as the Planck constant, h, and the speed of light in vacuum, c, to
a technical constant such as the luminous efficacy,K cd.The set of the seven defin-
ing constants has been chosen such that they provide amost fundamental, stable,
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Figure 2.4 Illustration of the base
units of the SI and their defining
constants. Source: Courtesy of
PTB.

and universal reference and simultaneously allow for practical realizations with
smallest uncertainties [11]. All physical artifacts are abandoned in the present SI.
The previous SI consisted of 7 base units and 22 derived units with specific

names. A formal distinction between the base units and derived units does not
exist in the present SI, however, is maintained since it is historically established
and proven to be useful and in particular to maintain consistency with interna-
tional written standards such as the ISO/IEC 80000 series. The system is called
coherent, which means that the derived units are given as a product of powers of
the base units with only “1” as the numerical factor (e.g., for the derived unit for
energy, joule, we have 1 J = 1m2 kg s−2). Consequently, numerical equations do
have the same format as quantity equations.
Now we briefly describe the present (and the previous) seven base units: sec-

ond, meter, kilogram, kelvin, ampere, mole, and candela. In the present defini-
tion, one of the seven defining constants is explicitly assigned to each base unit
as described in the following sections. For further reading, we refer to the SI
brochure of the BIPM [11].

2.2.1 The Second: Unit of Time

The unit second was originally defined as the 86 400th part of the duration of a
mean solar day. However, at the 11th CGPM in 1960, after it had been shown that
the rotation of the earth was not stable, the second was referred to the duration
of the tropical year in 1900 (ephemeris second). In 1967 [12], however, the defini-
tion of the second was changed and no longer based on an astronomic timescale
but refers to the frequency of electromagnetic radiation of a magnetic dipole
transition in the hyperfine split |F = 3, mF = 0⟩ ↔ |F = 4, mF = 0⟩ ground state
62S1/2 of the isotope 133Cs (for the energy level scheme of 133Cs; see Figure 3.3).
The definition of the second is unchanged in the present SI and is still defined
via the hyperfine transition frequency in 133Cs, Δ𝜈Cs, which is now one of the
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defining constants of the SI. According to the SI-Brochure [11], the wording for
the definition of the second is as follows:

The second, symbol s, is the SI unit of time. It is defined by taking the
fixed numerical value of the caesium frequency Δ𝜈Cs, the unperturbed
ground-state hyperfine transition frequency of the caesium 133 atom, to
be 9 192 631 770 when expressed in the unit Hz, which is equal to s−1.

This definition implies the exact relation Δ𝜈Cs = 9 192 631 770Hz. Inverting
this relation gives an expression for the unit second in terms of the value of the
defining constant Δ𝜈Cs:

1 Hz =
Δ𝜈Cs

9 192 631 770
or 1 s = 9 192 631 770

Δ𝜈Cs
(2.19)

The second is equal to the duration of 9 192 631 770 periods of the radiation cor-
responding to the transition between the two hyperfine levels of the unperturbed
ground state of the 133Cs atom [11].
The wording in the present SI is intended to make it clear that the definition

refers to an isolated cesium atom unperturbed by any external field such as elec-
tric and magnetic fields and black body radiation. This wording thus defines the
idealized value of the Cs hyperfine transition frequency and defines the “proper
time” valid for any gravitational potential [13]. For the provision of a coordinated
timescale, the signals of different primary clocks in different locations are com-
bined, which must be corrected for relativistic frequency shifts.
In the previous SI, the definition of the second read as follows:

The second is the duration of 9 192 631 770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels of the ground
state of the caesium 133 atom.

Despite the different wording, the definitions in the previous and the present
SI are identical.
By this definition of the second, it had been ensured that at the time of the def-

inition the new “atomic clock second” did agree with the ephemeris second. To
keep the astronomic timescale and the atomic timescale (coordinated universal
time (UTC)) identical, leap seconds are added (or subtracted) to the interna-
tional atomic time (TAI) occasionally whenever their difference becomes larger
than 0.9 s. Up to today, 27 leap seconds have been added to UTC since 1972 (see
also [14]). The responsibility for adding or subtracting leap seconds lies with the
International Earth Rotation and Reference Systems Service (IERS), and chang-
ing the procedure by taking much longer time intervals for coordinating these
two timescales is under discussion.
The definition of the second is put into praxis, that is, realized, as metrologists

use to say, by atomic clocks. The basic concept of atomic clocks is to lock the
frequency of a local oscillator to the frequency of an electronic resonance of the
respective atom, which in the classical Cs atomic clocks lies in the microwave
regime. The two different versions of primary Cs atomic clocks currently in use
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operate with a thermally generated beam of Cs atoms and laser-cooled Cs atoms,
respectively, which are described in detail in Chapter 3.

2.2.2 The Meter: Unit of Length

The definition of the meter is also unchanged in the present SI and based on the
defining constant speed of light in vacuum [11].

The metre, symbol m, is the SI unit of length. It is defined by taking the
fixed numerical value of the speed of light in vacuum c to be 299 792 458
when expressed in the unit m s−1, where the second is defined in terms of
the caesium frequency Δ𝜈Cs.

One meter is defined as the length of the path traveled by light in vacuum dur-
ing a time interval of 1/299 792 458 of a second [11].
Thus

1m = (c∕299 792 458) s ≈ 30.663 319 c
Δ𝜈Cs

(2.20)

Since 1983, the following definition had been used for the meter in the previ-
ous SI:

The metre is the length of the path traveled by light in vacuum during a
time interval of 1/299 792 458 of a second.
It follows that the speed of light in vacuum is exactly 299 792 458 m/s,
c0 = 299 792 458 m/s.

Though customary in astronomy to measure distances in the path length light
travels in a given time (e.g. light-year), it is not very convenient for daily life
purposes. Therefore, the Consultative Committee for Length (CCL) of the Inter-
national Committee for Weights and Measures (CIPM) recommended three dif-
ferent procedures to realize the meter:

(i) According to its definition by measuring the distance light travels within a
certain time interval.

(ii) Via radiation sources (in particular lasers) with known wavelength (or fre-
quency). A list of respective radiation sources (Mise enPratique) is published
by the CCL and frequently updated [15–17].

(iii) Via the vacuum wavelength, 𝜆, of a plane electromagnetic wave with fre-
quency f . The wavelength is obtained according to 𝜆 = c/f .

According to procedures (ii) and (iii), interferometry can then be applied to cal-
ibrate the length of a gauge block [18]. Gauge blocks made of metals or ceramics
exhibit two opposing precisely flat, parallel surfaces. For calibration of its length,
the gauge block is wrung on an auxiliary platen forming one of the endmirrors of
a modified Michelson interferometer (Twyman–Green interferometer, Kösters
comparator). Since interference can be obtained from both end surfaces of the
gauge block, its length can be measured in terms of the wavelength of the radi-
ation used by counting the interference orders. Iodide-stabilized He–Ne lasers
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are often applied for this purpose. For the highest precision, the interferometer
is placed in vacuum to avoid uncertainties due to the refractive index of air. In
addition, the temperature must be precisely known and stable. In any case, the
frequency (and hence the wavelength) of the respective laser must be known
in terms of the frequency of the Cs hyperfine transition frequency, Δ𝜈Cs, which
defines the second. Today, these many orders of frequency are bridged by optical
frequency combs. This technique for which T. Hänsch and J. Hall were awarded
the 2005 Nobel Prize in physics can be considered as a gear, which transfers the
microwave frequency of the Cs atomic clock into the visible and adjacent spectral
regimes. The name “optical frequency comb” refers to the emission spectrum of
mode-locked lasers generating ultrafast (fs) laser pulses. Femtosecond frequency
combs are discussed in more detail in Section 9.1.1.
At present, the meter can be realized according to recommendations (ii) and

(iii) of the CCL with a relative uncertainty of the order of 10−11, and gauge cali-
brations can reach fractional uncertainties as low as 10−8 [18, 19].

2.2.3 The Kilogram: Unit of Mass

The definition of the kilogram reads as follows [11]:

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the
fixed numerical value of the Planck constant h to be 6.626 070 15× 10−34
when expressed in the unit J s, which is equal to kgm2 s−1, where themetre
and the second are defined in terms of c and Δ𝜈Cs.

This definition implies the exact relation h= 6.626 070 15× 10−34 kgm2 s−1.
Inverting this relation gives an exact expression for the kilogram in terms of the
three defining constants h, Δ𝜈Cs, and c [11]:

1 kg = (h∕6.626 070 15 × 10−34)m−2 s ≈ 1.475 5214 × 1040hΔ𝜈Cs∕c2

(2.21)

The techniques for realization of the kilogram according to its definition (Kib-
ble balance and Avogadro experiment) are described in Chapter 7.
Before the redefinition, the kilogram had been defined since the first CGPM in

1889 by the international platinum/iridium prototype (IKP) (Figure 2.5) stored in
the premises of the BIPM in Sévres in the suburban of Paris. At the third CGPM
in 1901, this definition was confirmed by the following statement:

The kilogram is the unit of mass; it is equal to the mass of the international
prototype of the kilogram.

It followed that themass of the IKP had always been 1 kg exactly,m(IKP)≡ 1 kg.
However, due to the inevitable accumulation of contaminants on its surfaces,
the international prototype is subject to reversible surface contamination
that approaches 1 μg per year in mass. For this reason, the CIPM declared
that, pending further research, the reference mass of the international pro-
totype is that immediately after cleaning and washing by a specific method
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Figure 2.5 The Pt/Ir kilogram
prototype as stored at the
Bureau International des
Poids et Mesures (BIPM).
Source: Courtesy of BIPM.

(see Section 7.1). This reference mass was then used to calibrate national
standards of platinum/iridium alloy or stainless steel.
However, comparisons of the prototype with its copies during the 2nd and 3rd

verification around 1946 and 1990, respectively, appeared to indicate that there
might also be some irreversible change in its mass, which indeed had been the
major driving force for the new definition of mass and the other SI units [20] (see
Chapter 7).

2.2.4 The Ampere: Unit of Electric Current

The ampere is defined in the present SI as follows [11]:

The ampere, symbol A, is the SI unit of electric current. It is defined by
taking the fixed numerical value of the elementary charge e to be 1.602
176 634× 10−19 when expressed in the unit C, which is equal to A s, where
the second is defined in terms of Δ𝜈Cs.

This definition implies the exact relation e= 1.602 176 634× 10−19 A s. Inverting
this relation gives an exact expression for the unit ampere in terms of the defining
constants e and Δ𝜈Cs [11]:

1 A =
(

e
1.602 176 634 × 10−19

)
s−1 ≈ 6.789 687 × 108 Δ𝜈Cse (2.22)
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The effect of this definition is that 1A is the electric current corresponding to
the flow of 1/(1.602 176 634× 10−19) elementary charges per second.
In the previous SI, the ampere was defined at the ninth CGPM in 1948 as

follows:

The ampere is that constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular cross-section,
and placed 1metre apart in vacuum, would produce between these con-
ductors a force equal to 2× 10−7 N m−1 of length.

This definition fixed the value of 𝜇0, the permeability of vacuum or magnetic
constant, according to Faraday’s law to exactly 4π× 10−7 Hm−1.
A realization of the ampere precisely according to this definition obviously

had not been possible. Closest to its definition, the ampere was realized by the
so-called current balances, where the force between two coils passed by a given
current is balanced by gravitational force. This allows realization of the ampere
with an uncertainty of order 10−6. Alternatively, the ampere had been reproduced
(not realized!) according to Ohm’s law through the units V90 and Ω90 resulting
in the non-SI unit A90. V90 and Ω90 had been represented, respectively, by the
Josephson and quantum Hall effect (see Chapters 4 and 5). In the present SI,
the ampere can be realized by the quantumHall effect and Josephson effect since
the SI volt and the SI ohmnowcan be realized by the Josephson and quantumHall
effect. Alternatively, the ampere can be realized through single-electron transport
devices (see Chapter 6).

2.2.5 The Kelvin: Unit of Thermodynamic Temperature

The definition of the kelvin is as follows [11]:

The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is
defined by taking the fixed numerical value of the Boltzmann constant k
to be 1.380 649× 10−23 when expressed in the unit J K−1, which is equal to
kgm2 s−2 K−1, where the kilogram, metre and second are defined in terms
of h, c and Δ𝜈Cs.

This definition implies the exact relation k= 1.380 649× 10−23 kgm2s−2K−1.
Inverting this relation gives an exact expression for the kelvin in terms of the
defining constants k, h, and Δ𝜈Cs [11]:

1 K =
(1.380 649

k

)
10−23 kg m2 s−2 ≈ 2.266 6653

Δ𝜈Csh
k

(2.23)

One kelvin is equal to the change of thermodynamic temperature that results
in a change in thermal energy kT by 1.380 649× 10−23 J.
The previous definition of the unit of thermodynamic temperature had been

decided at the 10th CGPM in 1954 by choosing the triple point of water as the
basic fix point and assigning the temperature of 273.16K to it. The name kelvin,
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however, was only accepted at the 13th CGPM in 1967/1968. The definition of
the kelvin in the previous SI is as follows:

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of
the thermodynamic temperature of the triple point of water.
It follows that the thermodynamic temperature of the triple point of water
is exactly 273.16K, TTPW = 273.16K.

However, since the triple-point temperature depends on the isotopic composi-
tion of the water, the CIPM at its 2005 meeting affirmed that

This definition refers to water having the isotopic composition defined
exactly by the following amount of substance ratios: 0.000 155 76 mol of
2H per mole of 1H, 0.000 379 9 mol of 17O per mole of 16O, and 0.002 005
2 mol of 18O per mole of 16O. (Vienna Standard Mean Ocean Water).

Additionally, the triple-point temperature is affected by impurities dissolved.
Nonetheless, the triple-point temperature had been realized especially in con-
structed triple-point cells with a reproducibility of 2× 10−7 in the previous SI.
Since in the present SI the kelvin is defined by fixing the numerical value of

the Boltzmann constant, k, instead of the triple point of water, TTPW, the latter
must be determined experimentally with an uncertainty assigned to its value. At
the time of adopting the present definition, TTPW was equal to 273.16K with a
relative standard uncertainty of less than 1× 10−6 based on measurements of k
made prior to the redefinition.
Primary thermometers allow the realization of the kelvin at any temperature in

the present SI based on the defining constant k and a well-understood physical
systemwhose temperaturemay be derived from traceablemeasurements of other
quantities such as volume, pressure, speed of sound (see Chapter 8). Primary
thermometers were already used in the previous SI to determine temperatures
other than the triple-point temperature (TTPW) using the best-known value of
the Boltzmann constant. They were also used to determine the Boltzmann con-
stant at the triple-point temperature prior to the redefinition resulting in the fixed
value of k (see Chapter 8).
However, primary thermometers are difficult to use. Therefore, a practical

international temperature scale (ITS) has been defined as decided by the CGPM
in 1990 [21]. This ITS-90 is still used in the present SI and is supposed to be as
close as possible to the thermodynamic temperature scale. The ITS is defined
and represented by several fix points and respective measurement procedures
to interpolate between these fix points. It is valid with fix points such as the
triple points of hydrogen, neon, oxygen, argon, mercury, and water (of course)
and melting points of gallium and other metals such as indium and copper (at
1357K).The ITS-90 presently extends from 0.65K up to the highest temperature
accessible by radiation thermometry applying Planck’s law. For temperatures in
the range of 1K to 0.902mK also, a practical temperature scale on the base of the
melting pressure curve of 3He has been defined, the provisional low temperature
scale, PLTS 2000 [21].



18 2 Some Basics

Because of the way temperature scales used to be defined, it remains com-
mon practice to express a thermodynamic temperature, symbol T , in terms of
its difference from the reference temperature T0 = 273.15K, the ice point. This
difference is called the Celsius temperature, symbol t, which is defined by the
quantity equation: t = T − T0. The unit of Celsius temperature is the degree
Celsius, symbol ∘C, which is by definition equal in magnitude to the kelvin. A
difference or interval of temperature may be expressed in kelvins or in degrees
Celsius (13th CGPM, 1967/68).

2.2.6 The Mole: Unit of Amount of Substance

The quantity used to quantify the amount of elements or chemical compounds
taking part in a chemical reaction is called amount of substance. This quantity is
proportional to the number of elementary units of a sample with the proportion-
ality constant being the same universal constant for all samples.The constant that
relates the number of entities, N(X), to the amount of substance, n(X), is called
the Avogadro constant, NA, N(X) = NA ⋅ n(X).
The unit of amount of substance is the mole [11]:

Themole, symbolmol, is the SI unit of amount of substance.Onemole con-
tains exactly 6.022 140 76× 1023 elementary entities. This number is the
fixed numerical value of theAvogadro constant,NA, when expressed in the
unit mol−1 and is called the Avogadro number. The amount of substance,
symbol n, of a system is a measure of the number of specified elemen-
tary entities. An elementary entity may be an atom, a molecule, an ion, an
electron, any other particle or specified group of particles.

This definition implies the exact relation NA = 6.022 140 76× 1023 mol−1.
Inverting this relation gives an exact expression for the mole in terms of the
defining constant NA:

1 mol =
(
6.022 140 76 × 1023

NA

)
(2.24)

The mole is defined as the amount of substance of a system that contains
6.022 140 76× 1023 specified elementary entities.
The previous definition of the mole fixed the value of the molar mass of

carbon 12,M(12C) to be exactly 0.012 kg/mol [11]:

1) Themole is the amount of substance of a systemwhich contains asmany
elementary entities as there are atoms in 0.012 kg of carbon 12; its sym-
bol is “mol.”

2) When the mole is used, the elementary entities must be specified and
may be atoms, molecules, ions, electrons, other particles, or specified
groups of such particles.

It follows that the molar mass of carbon 12 is exactly 12 g mol−1,
M(12C) = 12 g mol−1.
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In this definition, it was understood that unbound atoms of carbon 12, at
rest and in their ground state, are referred to. In the present SI, M(12C) is no
longer known exactly and must be determined experimentally. The value chosen
for NA is such that at the time of adopting the present definition of the mole,
M(12C) was equal to 0.012 kg/mol with a relative standard uncertainty of less
than 1× 10−9 [11].
The molar mass of any atom or molecule X may still be obtained from its rela-

tive atomic mass from the equation

M(X) = Ar(X) [M(12C)∕12] = Ar(X)Mu (2.25)

and the molar mass of any atom or molecule X is also related to the mass of the
elementary entitym(X) by the relation

M(X) = NAm(X) = NAAr(X)mu (2.26)

In these equations,Mu is the molar mass constant, equal toM(12C)/12, andmu
is the unified atomic mass constant, equal to m(12C)/12. They are related by the
Avogadro constant through the relation

Mu = NAmu (2.27)

The realization of the mole is done by primary measurement techniques (e.g.
gravimetry, coulombmetry, or isotope dilutionmass spectroscopy) with specified
measurands and uncertainties traced back to the SI [22].

2.2.7 The Candela: Unit of Luminous Intensity

The candela is a photometric unit defining the value of luminous intensity at the
maximum of the spectral response of human eyes for daylight seeing, V (𝜆), at a
wavelength of about 555 nm corresponding to a frequency of 540× 1012 Hz. The
definition of the candela in the present SI is identical to the one in the previous
SI, yet the wording is modified to be consistent with the other units [11]:

The candela, symbol cd, is the SI unit of luminous intensity in a given
direction. It is defined by taking the fixed numerical value of the luminous
efficacy of monochromatic radiation of frequency 540× 1012 Hz, K cd, to
be 683 when expressed in the unit lmW−1, which is equal to cd srW−1,
or cd sr kg−1 m−2 s3, where the kilogram, metre and second are defined in
terms of h, c and Δ𝜈Cs.

This definition implies the exact relation K cd = 683 cd sr kg−1 m−2 s3 for
monochromatic radiation of frequency 𝜈 = 540× 1012 Hz. Inverting this relation
gives an exact expression for the candela in terms of the defining constants K cd,
h, and Δ𝜈Cs [11]:

1 cd =
(Kcd

683

)
kg m2 s−3 sr−1 ≈ 2.614 830 × 1010(Δ𝜈Cs)2hKcd (2.28)
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Table 2.1 List of all units with special name and symbol.

Name Symbol Derivation from defining constants
Defining
constant(s)

Base units
Second s 1 s = 9 192 631 770∕Δ𝜈Cs Δ𝜈Cs
Meter m 1 m ≈ 30.663 319 c∕Δ𝜈Cs c, Δ𝜈Cs
Kilogram kg 1 kg ≈ 1.475 5214 × 1040 hΔ𝜈Cs∕c2 h, c, Δ𝜈Cs
Kelvin K 1 K ≈ 2.266 6653 Δ𝜈Csh∕k k, h, Δ𝜈Cs
Ampere A 1 A ≈ 6.789 687 × 108 Δ𝜈Cse e, Δ𝜈Cs
Mole mol 1 mol = 6.022 140 76 × 1023∕NA NA

Candela cd 1 cd ≈ 2.614 830 × 1010 (Δ𝜈Cs)2h Kcd K cd, h, Δ𝜈Cs

Symbol Derivation
Expressed in
base units

Defining
constant(s)

Derived units
Hertz Hz 1/s s−1 Δ𝜈Cs
Newton N kg(m/s2) kgm s−2 h, c, Δ𝜈Cs
Pascal Pa N/m2 kgm−1 s−2 h, c, Δ𝜈Cs
Joule J Nm kgm2 s−2 h, c, Δ𝜈Cs
Watt W J/s kgm2 s−3 h, c, Δ𝜈Cs
Volt V e, h, Δ𝜈Cs
Ohm Ω e, h
Coulomb C A s A s e
Farad F C/V e, h, Δ𝜈Cs
Siemens S A/V e, h
Weber Wb ϕ0 e, h
Tesla T Wb/m2 e, h, c, Δ𝜈Cs
Henry H Wb/A e, h, Δ𝜈Cs
Degree Celsius oC K− 273.15 K k
Radian rd mm−1 c, Δ𝜈Cs
Steradian sr m2 m−2 c, Δ𝜈Cs
Lumen lm cd sr cd sr K cd

Lux lx lm/m2 cd srm−2 c, Δ𝜈Cs, K cd

Becquerel Bq 1/s s−1 Δ𝜈Cs
Gray Gy J/kg m2 s−2 c, Δ𝜈Cs
Sievert Sv J/kg m2 s−2 c, Δ𝜈Cs
Katal kat mol/s mol s−1 NA, Δ𝜈Cs
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The justification as one of the base units in the previous and present SI had
been, and still is, the immense economic importance of the quantitative charac-
terization of illuminating light sources.
The previous definition had been set by the 16th CGPM in 1979:

The candela is the luminous intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 540× 1012 Hz and that has a
radiant intensity in that direction of 1/683watt per steradian.
It follows that the spectral luminous efficacy for monochromatic radi-
ation of frequency of 540× 1012 Hz is exactly 683 lmW−1, K = 683 lm
W−1 = 683 cd srW−1.

2.2.8 Summary: Base and Derived Units of the SI

To conclude Section 2.2, Table 2.1 summarizes the present definition of the 7 base
units and the 22 derived units with given names.
Note that the derivation of a derived unit is not always unambiguous. For

example, the joule and watt can be derived from mechanical or electrical units.
In Table 2.1, we have chosen to express the joule and, in turn, the watt by
mechanical units. Moreover, the traceability of a derived unit to the defining
constants of the SI is not always unambiguous either. The given sets of defining
constants are the choice of the authors. We have chosen to link the electrical
units to e and h only, whenever this is possible. Consequently, for the unit of
magnetic flux, weber, we have chosen the flux quantum, Φ0, for the derivation
instead of Vs. This selection highlights the importance of the electrical quantum
effects that involve e and h (see Chapters 4–6 for the details).
We finally state that the previous SI has proven to be most successful in pro-

viding the base for a harmonized, comparable, and traceable measurement sys-
tem worldwide. Yet, the present SI is conceptually superior since it rests totally
on constants of nature, which on the level required for present and near future
metrology requirements are independent on space and time. So, all physical arti-
facts are abandoned. It further gives freedom to choose the experiments or tech-
niques to realize the respective unit, and, therefore, improved techniques as well
as advances in science can be considered and implemented at any time without
changing the definition. In a nutshell, the present SI is universal, highly stable,
and open to scientific and technical innovation.
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3

Realization of the SI Second: Thermal Beam Cs Clock, Laser
Cooling, and the Cs Fountain Clock

This chapter describes the currently used common versions of Cs atomic clocks
to realize the unit of time, the second, according to its present (and previous)
definition.
We begin by recalling a few basics about the characterization of frequency

standards and the nomenclature of electronic states in atoms. Next, we describe
the “classical” Cs clock operating with a thermally generated beam of Cs atoms.
Subsequently, we present the methods for laser cooling and trapping of neutral
atoms, which laid the base for the realization of the Cs fountain clock discussed
at the end of this chapter. Laser cooling is also indispensable for the so-called
optical clocks, which we discuss in Section 9.1.
To start, let us recall some basic quantities to characterize frequency standards.

The quality of a frequency standard is quantified by its accuracy and frequency
stability or, vice versa, its uncertainty and frequency instability. The accuracy of
a frequency standard characterizes how well the output of a clock agrees with
the SI definition of the second. Different systematic effects may be the cause for
differences in the instantaneous frequency output with respect to the nominal
transition frequency of the unperturbed individual atom such as finite temper-
ature, external magnetic or electric fields. A careful estimate of the uncertainty
of a clock considering all possible contributions thus is of utmost importance for
primary clocks that claim highest accuracy and stability. The evaluation of the
frequency stability, which reflects statistical (noise) fluctuations of the output fre-
quency of a standard, could, in principle, follow the standard statistical procedure
by computing, for example, the standard deviation of a series of clock readings
relative to a perfect or much better clock. However, this would result in mislead-
ing conclusions in some cases. Consider, for instance, a very stable clock with a
constant frequency offset. In this case, the standard deviation incorrectly would
assign a high instability to the standard, and, even worse, the standard deviation
would increase with time. Therefore, clocks and their frequency standards are
usually characterized by the so-called Allan deviation and its square, the Allan
variance, respectively [1], as discussed briefly in the following text.
Consider the output voltage of a frequency standard

U(t) = U0 sin(2π𝜈(t) ⋅ t) = U0 sin(2π𝜈0 ⋅ t + 𝜑(t)) (3.1)
whereU0 is the amplitude (which we have assumed to be stable), 𝜈(t) the instan-
taneous frequency, 𝜈0 the nominal frequency, and 𝜑(t) the instantaneous phase.

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
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The relative frequency deviation, also called fractional frequency, is then given by

y(t) ≡
𝜈(t) − 𝜈0

𝜈0
= 1

2π𝜈0
d𝜑
dt

(3.2)

the relative frequency drift by

ẏ(t) ≡ d
dt

y(t) (3.3)

and the normalized phase fluctuation by

x(t) ≡ 𝜑(t)
2π𝜈0

(3.4)

If the timescale is divided into contiguous sections with width 𝜏 , the mean rel-
ative frequency deviation in section n, yn(𝜏), is given by

yn(𝜏) =
1
𝜏 ∫

tn+𝜏

tn
y(t) dt. (3.5)

The fluctuation of the instantaneous frequency of a clock, that is, its stability or
instability, is characterized by the two-sample variance, also calledAllan variance:

𝜎
2
y (𝜏) =

1
2
⟨(yn+1 − yn)2⟩ (3.6)

For a finite series of measurements, this can be approximated by

𝜎
2
y (𝜏) =

1
2(k − 1)

k−1∑
n=1

(yn+1 − yn)2 (3.7)

where k, the number of samples taken, must be sufficiently large to achieve high
significance.
The Allan standard deviation, 𝜎y(𝜏), is defined as the square root of the Allan

variance. A double logarithmic plot of 𝜎y(𝜏) versus 𝜏 allows to identify possi-
ble causes of instability. If, for example, shot noise (white frequency noise) is the
dominating contribution, 𝜎y(𝜏) decreases like 𝜏−1/2, for 1/f frequency noise 𝜎y(𝜏)
turns constant at higher 𝜏 andmay even increase again, for example, if frequency
drift is present.
For white frequency noise, the Allan standard deviation scales as

𝜎y(𝜏) ∝
1
Q

1
(S∕N)

𝜏
−1∕2 (3.8)

whereQ, the line quality factor,Q = 𝜈/Δ𝜈, is given by the frequency of the transi-
tion, 𝜈, with respect to its measured linewidth,Δ𝜈, and S/N is the signal-to-noise
ratio.
A more elaborated discussion of the properties of frequency standards can be

found in [2].
Next, we recall a few basics about the nomenclature of electronic states in

atoms, since this will repeatedly encounter us throughout the book.
Let us take the ground state of the Cs atom “62S1/2” as an example. The first

number, 6, indicates the main quantum number. The capital letter, S, gives the
angular momentum in units of ℏ = h/2π, where S, P, D, F, and so on stand for,
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respectively, 0, 1, 2, 3, 4, and so on.The small number on the upper left stands for
the multiplicity, which is given by (2S+ 1), where S is the resulting electron spin
of the atom in units ℏ. The lower right number finally corresponds to the total
angular momentum of the atom, J = L+ S (for Russell–Saunders coupling). For
the notation of a specific quantum state, we shall use the ⟨bra|ket⟩ notation. Note
that for optical dipole transitions, we have the selection rulesΔJ = 0, ±1 with the
exception that |0⟩→ |0⟩ transitions are also forbidden.

3.1 The Thermal Beam Cs Clock

The setup of a Cs atomic clock with a thermally generated atom beam is schemat-
ically shown in Figure 3.1. In these clocks, the Cs atoms are generated by evapo-
ratingCs in an oven.The atoms in this “thermal beam” are then state selectedwith
respect to their quantum state by an inhomogeneous magnetic field, the polar-
izer (Stern–Gerlach technique). Alternatively, optical pumping can be applied
for state selection. Subsequently, the atoms enter a microwave Ramsey resonator
where the resonant transition between the two hyperfine states is induced.
Themethod of separated oscillatory fields applied here has been first proposed

by Ramsey [3, 4] in the frame of atomic beam magnetic resonance spectroscopy.
As shown in Figure 3.1, the microwave interaction regime is not a homogeneous
microwave cavity but instead is split into two separated interaction regimes (each
of width l) separated by an interaction-free regime of length L. The major result
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Figure 3.1 Schematic representation of a “thermal” Cs atomic clock. In the lower left, a section
of a Ramsey resonance curve is shown. ID is the current of the ionization detector. Source:
Courtesy of A. Bauch, PTB.
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of this arrangement is to increase the effective interaction time between the atom
and the microwave, which thus according to the Heisenberg uncertainty relation
results in a respective decrease in the linewidth of the resonant transition. The
Ramsey technique has several advantages even compared to a single interaction
zone of the same total length 2l+ L. For example, the linewidth is narrower (by
a factor of 0.6), the requirements on the homogeneity of the magnetic field are
considerably relaxed, and the first-order Doppler effect is absent provided the
phase difference of the microwave field in the two sections is constant [4–6].
There are different approaches to describe phenomenologically the action of

the Ramsey resonator. One is in terms of coherent interaction of the atoms with
the microwave field by two subsequent 𝜋∕2 pulses in the two regions. When the
frequency of the microwave field exactly matches the Cs hyperfine frequency
splitting of the |F = 3, mF = 0⟩ and |F = 4, mF = 0⟩ states, the atoms are placed by
the π∕2 pulse in a superposition with equal probability for both states. This state
then can evolve freely with a frequency corresponding to the energy difference
of these two states and enter the second interaction zone. Since the phase eval-
uation has been dictated by the microwave field in the first zone, the interaction
with the second 𝜋∕2 pulse is fully coherent (provided no phase relaxation occurs
during the free travel), that is, after the interaction in the second zone, the prob-
ability of finding the atom in either state (F = 3 or F = 4) depends on the phase of
the rf field with respect to the atomic oscillator. Thus, as the frequency of the rf
field is changed, the number of atoms in either state oscillates, giving rise to the
Ramsey interference. Alternatively, the action of the Ramsey arrangement can be
described in analogy to an optical double-slit experiment [5]. A calculation of the
transition probability, P(𝜏), for monochromatic atoms and T ≫ 𝜏 , where T is the
time traveled freely between the two interaction sections, T = L/v (v is the veloc-
ity), and 𝜏 is the interaction time with themicrowave field in each section, 𝜏 = l/v,
yields [6]

P(𝜏) = 1
2
sin2b𝜏(1 + cos(𝜔

𝜇W − 𝜔HF)T + 𝜑) (3.9)

where 𝜔μW is the angular frequency of the microwave field and 𝜔HF is the angu-
lar frequency of the hyperfine splitting, b is the Rabi frequency, b = 𝜇BμW/ℏ (𝜇
is the magnetic dipole moment and BμW the amplitude of the microwave mag-
netic field), and𝜑 is the phase difference between the twomicrowave fields in the
two interaction sections. As a function of the detuning, 𝛿 = 𝜔μW −𝜔HF, Eq. (3.9)
describes an interference structure as shown in Figure 3.2, the central part of
which is also shown in Figure 3.1.
Equation (3.9) is valid for a given velocity of the atoms, and although the central

peak of the Ramsey fringes does not exhibit first-order Doppler broadening, the
fringe pattern is smeared out at larger detuning because of the velocity distribu-
tion, causing the so-called Ramsey pedestal.
Finally, as shown in Figure 3.1, the atoms leaving the Ramsey resonator pass

a second state-selecting magnet (analyzer) and hit a detector with its signal
intensity proportional to the number of atoms that have undergone a resonance
transition. In addition, a small constant magnetic field (C field) is applied
to split the otherwise energetically degenerated mF states to excite only the
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Figure 3.2 Measured Ramsey fringe pattern for the PTB’s CS1 thermal beam clock. The curve
appears upside down compared to the result of Eq. (3.9) due to the special operation
configuration of PTB CS1. Source: Courtesy of A. Bauch, R. Wynands, PTB.

|F = 3, mF = 0⟩ ↔ |F = 4, mF = 0⟩ transitions. Yet, the magnetic field-induced
(quadratic) shift of the mF = 0 states must be accounted for. The detector
signal is then used through a feedback loop to stabilize the oscillator to the clock
transition frequency.The relative uncertainty for these thermal beam clocks with
magnetic state selection is of the order of 10−14 or slightly below as, for example,
for the PTB’s CS1 with a relative uncertainty of 8× 10−15 [7]. Slightly smaller
uncertainties have been achieved using optical pumping for state selection and
laser-induced fluorescence for detection [8, 9].
We further note that meanwhile chip-scale atomic clocks based on microfab-

ricated vapor cells with alkali atoms (usually 87Rb) had been developed at the
National Institute of Standards and Technology (NIST) and have become com-
mercially available (see, for example, [10]).
Limiting factors for both clock accuracy and frequency stability of the real-

ization of the second by the thermal Cs clock are the second-order (relativistic)
Doppler effect and the limited interaction time regardless of the application
of the Ramsey scheme (always assuming that the intrinsic, recombination
lifetime-limited linewidth is much narrower). Both scale with the velocity of
the atoms, v (for the second-order Doppler effect, which is a consequence
of the relativistic time dilatation, we have Δ𝜈/𝜈 = (1/2)(v/c)2, which, at room
temperature, [v∼ 100m/s] is of the order of 10−13). Thus, the ultimate choice
would be to use atoms with lower velocity. The first proposal in this sense
by Zacharias (see, for example, [11]) was to use a vertical geometry with one
microwave interaction regime where the atoms are launched upward and still
interact with the microwave twice, first when flying upward and second when
falling due to the action of gravity. The transit time would again be determined
by the velocity of the atoms, and thus, a considerable increase in interaction
time could be expected for the slowest atoms within the thermal distribution.
Yet, the early approaches failed due to the weakness of the signal. However, with
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the progress of laser cooling techniques, the concept was successfully realized in
the fountain clocks (see Section 3.3).
Finally, since a clock is more than a frequency standard, validation of a clock

needs at least a second clock to compare with. In fact, clock comparisons are at
the heart of clock metrology as briefly mentioned at the end of Section 9.1.5.

3.2 Techniques for Laser Cooling and Trapping of Atoms

Laser irradiation as a method for cooling atoms and ion gases was first pro-
posed by Hänsch and Schawlow [12] and Wineland and Dehmelt [13] in 1975,
respectively. Cooling of atoms or ions relies on the presence of a strong allowed
optical transition, as it is the case in Cs, for example, for the 62S1/2 to 62P3/2
transition (see Figure 3.3). However, cooling and trapping techniques differ for
an ensemble of atoms or single ions.We briefly describe the cooling and trapping
techniques of neutral atoms relevant for the Cs fountain clock, that is, Doppler
and sub-Doppler cooling as well as optical molasses and magneto-optical traps.
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Cooling and trapping of ions as well as trapping of neutral atoms in optical
lattices are described in Chapter 9. For a more detailed reading on techniques
and application of laser cooling, the reader is referred to [15–19].

3.2.1 Doppler Cooling, Optical Molasses, and Magneto-Optical Traps

If an atom gas with a given temperature and hence velocity distribution – in
thermal equilibrium, this is a Maxwell–Boltzmann distribution – is irradiated
by a laser with wavelength 𝜆, slightly tuned to the red with respect to the res-
onance transition, only atoms with the “right” velocity opposing the laser beam
are able to absorb a photon, as the frequency is shifted by the proper amount due
to the Doppler effect. With the absorption process, a recoil momentum ℏk = h∕𝜆
pointing along the propagation direction of the incoming laser is transferred to
the atom. As the atom recombines back into its ground state by emission of a
photon, again it will receive a recoil momentum. However, since the emission
will be in a random direction, in repeating absorption and emission processes,
the “emission” recoil momentum averages out to zero but not the “absorption”
momentum. Thus, consequently, the velocity of the atoms traveling toward the
incoming laser beam will be lowered, and due to thermalization by scattering
among each other, the entire atom gas will become cooler maintaining approxi-
mately a Maxwell–Boltzmann distribution. However, as the atom gas cools, the
Doppler shift will be reduced, and, eventually, the incoming laser will not be in
resonance anymore.This problem can be overcome in two ways: (i) tune (sweep)
the laser frequency [20] or (ii) change the resonance frequency, for example, by
applying a DCmagnetic field due to the Zeeman effect [21].The Zeemanmethod
requires, however, that the shifts of the ground and excited states be different as
it is the case for the cooling transition in Cs. In this case, the field can gradually be
changed along the path of the atoms, thus always keeping a subset of atoms in res-
onance (Zeeman slower). A limit for this cooling procedure is set by the natural
(homogeneous) linewidth, Δ𝜈 = 1/(2πT) (T is the excited-state phase relaxation
time) of the resonance transition, resulting in aminimum temperature achievable
by Doppler cooling in a two-level system of [22]

TD = hΔ𝜈
2kB

(3.10)

Consider next two laser beams opposing each other and are still detuned
slightly to the red. Then for each atom, there is a laser beam, which travels in
the opposite direction as the atom (for the one-dimensional case to which we
restrict the discussion for the moment). The atomic resonance frequency is
shifted toward the laser frequency of the opposing beam such that absorption
can take place. Thus, there is a resulting force decelerating the atoms. With
three intersecting pairs of orthogonal laser beams as illustrated in Figure 3.4, the
so-called optical molasses (OM) can be realized. The name “optical molasses”
reflects the fact that the motion of atoms is like a particle (or body) in a viscous
medium. Note, however, that an OM does not provide a trap for atoms, since
there is no restoring force for atoms leaving the center of the intersecting laser
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Figure 3.4 Laser beam
arrangement for an optical
molasses. Source: Göbel and
Siegner 2005 [14]. Reproduced
with permission of John Wiley &
Sons.

beams. Trapping and cooling of atoms are realized by magneto-optical traps
(MOTs).
In an MOT, the combined action of a spatially inhomogeneous magnetic field

and laser light performs both cooling and trapping. It requires for the resonance
transition being involved that the angular momentum of the ground state, Jg, and
the excited state, Je, differ by one unit, Je = Jg + 1, that is, Jg = 0 and Je = 1 in
the simplest case as, for example, for 40Ca and 88Sr (see Chapter 9). Taking this
simplest case, the action of a DC magnetic field, B, will leave the ground state,
Jg = 0, unaffected, while the excited state, Je = 1, splits into 2Je + 1 = 3 substates
with mJ = 0, −1, and+ 1, respectively. The energy of the mJ = 0 state is almost
independent of the magnetic field strength, whereas the energies of themJ = ±1
vary linearly with the magnetic field:

ΔE = ± gJ𝜇BB (3.11)

where gJ is the Landé factor and 𝜇B the Bohr magneton. Optical transitions
between the ground state to the mJ = +1 and mJ = −1 excited state can be
induced by 𝜎+ and 𝜎− circular polarized light, respectively.
Next we consider a magnetic field that varies linearly along the z direction like

Bz (z) = bz from a center at z = 0 and two counter propagating laser beams of
opposite circular polarization, 𝜎+ and 𝜎−, respectively, slightly tuned to the red
with respect to the Jg → Je,mJ = 0 transition as shown in Figure 3.5. Atoms travel-
ing from z = 0 to the right opposing the 𝜎− laser beamwill have their energy level
mJ = −1 shifted toward the laser frequency, resulting in an increase in absorp-
tion. Conversely, for the 𝜎+ laser beam, the absorption even further decreases,
and which results in cooling. But in contrast to the OM, we now have a redriving
force toward the center at z = 0 due to the spatial gradient of the magnetic field.
On the other side, the same arguments hold with the role of the 𝜎+ and 𝜎− beam
reversed. A three-dimensional (3D) trap consequently can be realized similarly
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Figure 3.5 Energy levels and laser beam
arrangement in a (1D) MOT. Riehle 2004
[2]. Reproduced with permission of John
Wiley & Sons.
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to the OM (see Figure 3.4) but now with three pairs of opposing laser beams with
opposite circular polarization [23].Themagnetic fieldwith properties as required
is a quadrupole field that is usually generated by a pair of Helmholtz coils with
the opposite direction of the electric current (“anti-Helmholtz coils”).

3.2.2 Cooling Below the Doppler Limit

Cooling well below the Doppler limit was observed first by Bill Phillips’s group
at the NIST in Gaithersburg, where in a sodium gas, they measured tempera-
tures as low as T = 43 μK while the Doppler limit was at TD = 240 μK [24]. As
subsequently shown byDalibad andCohen-Tannoudji [25], this is due to themul-
tilevel character of the alkali atoms combined with a spatially varying light field.
Although in themeantime different schemes for sub-Doppler cooling (see, e.g. in
[15–19]) have been demonstrated, we shall briefly describe only Sisyphus cooling.
This mechanism is based on the standing-wave pattern generated by opposing
laser beams (in the z direction) with the same wavelength but orthogonal linear
(lin⟂ lin) polarization. In this standing-wave pattern, the polarization state varies
spatially with a period corresponding to the wavelength of the laser beams. The
polarization changes across half a wavelength are shown in Figure 3.6a. Starting,
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Figure 3.6 Illustration of Sisyphus cooling. (a) The polarization along the z direction in a
“lin ⟂ lin” standing-wave configuration. (b) The corresponding light shift of themg = +1/2 and
mg = −1/2 ground state. Riehle 2004 [2]. Reproduced with permission of John Wiley & Sons.
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for example, at z= 0, where we have a resulting linear polarization under 45∘ with
respect to the incoming beams, the polarization changes to 𝜎− circular polariza-
tion at z = 𝜆∕8 then becomes linear again at z = 𝜆∕4, and subsequently changes to
𝜎
+ circular polarization at z = 3∕8𝜆 and so forth. An atom with a J = 1/2 ground

state will experience a spatially varying shift of itsmg =−1/2 andmg =+1/2 states
due to the Stark effect as shown in Figure 3.6b. Consider an atom at the z = 𝜆/8
position, where the polarization is 𝜎−, traveling along the z direction.Whilemov-
ing forward, it has to climb up the hill at the expense of its kinetic energy. At the
top of the hill at z = 3/8𝜆, the polarization has changed to 𝜎+, resulting in strong
transitions into the excited stateme = +1/2 (Δm = +1) from where the atom can
recombine in either the mg = −1/2, 0, or +1/2 state, resulting in a net transfer
of atoms from the mg = −1/2 into the mg = +1/2 state where it ends up in the
potential minimum. Moving forward, it has to climb up the potential hill again,
and as it reaches the top at z = 5/8𝜆, it will be pumped by the 𝜎− light back into
themg = −1/2 state and the process is repeated again. In principle, cooling could
proceed until the recoil limit for atoms with total massM

T = (ℏk)2

2kBM
(3.12)

is reached (k is the wave vector of the laser light, while the Boltzmann constant is
denoted by kB in this section). This fundamental limit is set by the spontaneous
emission of a single photon, that is, themomentum transferred by the last photon
emitted before the final temperature is reached.

3.3 The Cs Fountain Clock

The Cs fountain clock [26] relies on the same principle as the “thermal beam”
Cs clock described in Section 3.1, that is, the |F = 3, mF = 0⟩→ |F = 4, mF = 0⟩
hyperfine microwave transition of the 133Cs ground state, Δ𝜈Cs, is the reference
transition according to the definition of the second, and a Ramsey scheme is
applied for the interrogation of the Cs atoms with the rf field. However, in the
fountain clock laser-cooled Cs atoms are used with a velocity (about 1 cm/s) that
is much lower than that of the Cs atoms in the thermal beam (of order 100m/s).
The interaction time increases accordingly, resulting in a considerably reduced
linewidth. The setup of a Cs fountain clock is schematically shown in Figure 3.7.
It consists of three major parts: the preparation zone, the detection zone, and the
microwave interaction zone. The Cs atoms are released into the cooling cham-
ber of the preparation zone from a Cs reservoir held at a constant temperature
close to room temperature and a partial pressure of some 10−6 Pa. Laser cool-
ing is achieved in an MOT in combination with an OM (sometimes only an OM
is used). The cloud of Cs atoms with about 107–108 atoms is cooled below the
Doppler limit to temperatures of order 1 μK. The strong dipole-allowed |62S1/2,
Fg = 4⟩ to the |62P3/2, Fe = 5⟩ transition (labeled 2 in Figure 3.3) is used for laser
cooling. However, since during the cooling cycle some atoms also relax – though
ideally forbidden – into the |Fg = 3⟩ state, in addition to the cooling laser beams,
a repumping laser (labeled 1 in Figure 3.3 is required to pump these atoms back



3.3 The Cs Fountain Clock 33

Figure 3.7 Schematic setup (simplified)
of an atomic fountain clock. Source:
Courtesy of R. Wynands, PTB.
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into the |Fg = 4⟩ state via the |Fe = 4⟩ state. At the end of the cooling phase,
a moving OM is generated by slightly detuning the vertical laser beams. If the
upward-pointing laser beam is detuned to the blue by an amount 𝛿𝜈 and vice
versa the downward-pointing laser to the red by the same amount, the result-
ing interference pattern moves upward (moving molasses) and the atom cloud
is accelerated to velocities of typically several meters per second. When sub-
sequently all laser beams are turned off, the atoms fly on into the microwave
resonator after passing the detection zone and the state selection cavity. As the
atoms enter the state selection cavity, they are in the |Fg = 4⟩ state with nine
|mF⟩ states (mF = −4, −3,…,+4) equally populated. In the state selection cavity,
atoms are transferred from the |Fg = 4, mF = 0⟩ state into the |Fg = 3, mF = 0⟩
state by applying a microwave pulse tuned at the clock transition frequency, and
subsequently, all other atoms that remained in the |Fg = 4⟩ state are pushed away
by a laser beam tuned to the |Fg = 4⟩→ |Fe = 5⟩ transition. Thus, only |Fg = 3,
mF = 0⟩ atoms enter the Ramsey cavity where the clock transition is excited as
described in Section 3.1.The interaction time is now given by the time of flight of
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the atoms up to their apogee, where due to gravitational force they come to rest
and subsequently fall back down to the cavity. This time of flight (T = 2

√
2h∕g)

for an h∼ 1m apogee above the cavity is of the order 1 s, which consequently
determines the repetition rate for the entire cycle. During the flight, the atomic
cloud will expand according to its thermal velocity, and thus, only a fraction of
the atoms will hit the aperture of the Ramsey resonator and undergo the second
Ramsey transition. However, as the atoms are cooled below the Doppler limit,
this spread for a T = 1 μK cloud is small such that about 50% of the atoms again
enter the interaction regime. If the atoms had been cooled to the Doppler limit
only (T = 125 μK), this fraction would have been reduced to about 1%. Finally,
the atoms after leaving the microwave section pass through the detection zone
where the number of atoms in the |Fg = 4⟩ and |Fg = 3⟩ states is detected sepa-
rately by laser-induced fluorescence [27].The detection zone has to be viewed as
three spatially subsequent zones. In the first part, the atoms pass a standing-wave
laser field exciting the |Fg = 4⟩→ |Fe = 5⟩ transition. Relaxation into the |Fg = 4⟩
state results in the emission of fluorescence.
Repeating this process many times (cycling) results in a fluorescence signal,

which can be detected by a photodetector with its overall signal strength being
proportional to the number of atoms originally in the |Fg = 4⟩ state. Under this
first detection stage, the atoms in the |Fg = 4⟩ state are then pushed away by a
strong unidirectional laser beam again tuned to the |Fg = 4⟩→ |Fe = 5⟩ transition
so that only |Fg = 3⟩ atoms reach the third zone. There, they are pumped in a
standing-wave field into the |Fg = 4⟩ state, and then again, the cycling transition
is used with the fluorescence signal now being proportional to the number of
|Fg = 3⟩ atoms entering the zone. The entire cycle from cooling to detection is
summarized in Figure 3.8.

(a) (b) (c) (d)

Detection

laser

Microwave

cavity

Figure 3.8 Principle of operation of the atomic fountain clock illustrating the essential four
steps in a measurement cycle: (a) preparation of the cloud of cold atoms, (b) launch of the
cloud toward the microwave cavity and subsequent passage through the state selection cavity
and Ramsey cavity, (c) free flight and turnaround of the cloud and subsequent second passage
through the Ramsey cavity, and (d) detection of the number of atoms in the |Fg = 3⟩ and
|Fg = 4⟩ states, respectively. Source: Courtesy of R. Wynands, PTB.
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As a major result, the Cs fountain clock has improved the stability and accu-
racy of the realization of the second by roughly 1 order of magnitude compared
to the thermal beam Cs clock [28–34]. Resulting values for the Allan standard
deviation as low as 𝜎y(𝜏) = 2.5× 10−14 (𝜏/s)−1/2 and fractional uncertainties of
1.71× 10−16 [34] have been reported. Consequently, the scale unit of the Interna-
tional Atomic Time (TAI) scale is presently dominated by frequency calibration
reports by fountain clocks operated in national metrology institutes [34, 35].
In addition, fountain clocks operating in a continuous mode, rather than the

previously described pulse mode, have been developed [36, 37]. Further, there
has been realized a 87Rb fountain frequency standard at the SYRTE laboratory
in Paris [38] and at Penn State University [39] as well as a dual fountain clock,
simultaneously using cesium and rubidium atoms also at SYRTE [40].
At the end of this section dealing with microwave clocks and frequency stan-

dards, hydrogen maser must be mentioned because of its excellent short-term
stability (Allan standard deviation <10−14 at 1 s of averaging time) and its use
in timing laboratories as the so-called flywheel to increase the short-time stabil-
ity of the timescales. The hydrogen maser is based on transitions between the
two |F = 1, mF = 0⟩ and |F = 0, mF = 0⟩ ground states of the hydrogen atom at
1.42GHz. From a beamof atoms, the |F = 1,mF = 0⟩ and |F = 1,mF = 1⟩ states are
selected by a Stern–Gerlach magnet and transferred into a storage bulb inside a
microwave cavity resonant with a transition frequency of 1.42GHz. All atoms in
the other ground states |F = 1,mF =−1⟩ and |F = 0,mF = 0⟩ do not reach the stor-
age bulb. Thus, a population inversion exists, resulting in stimulated emission of
the |F = 1,mF = 0⟩→ |F = 0,mF = 0⟩ transition, and self-sustaining maser oscil-
lationmay build up. A small antenna can pick up this oscillation (active hydrogen
maser). In contrast, in the passive hydrogen maser, a microwave signal at the res-
onance frequency is amplified by the population-inverted hydrogen atom gas.
For further description and discussion of the properties of active and passive

hydrogen masers, the reader is referred to [2].
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4

Flux Quanta, Josephson Effect, and the SI Volt

The elementary charge e and the Planck constant h are defining constants of the
present SI. Their fixed numerical values determine the SI value of the flux quan-
tum, which is an elementary excitation in superconductors. Superconductivity is
a macroscopic quantum effect, which is observed in certain solid-state systems at
low temperatures. The superconducting state can be described by a single wave
function, which extends over macroscopic distances in real space. The compos-
ite quasiparticles that occupy themacroscopic quantum state are bosonic Cooper
pairs consisting of two electrons, which areweakly bound to each other. If a super-
conducting ring is placed in a magnetic field, the magnetic flux penetrating the
ring is found to be quantized in integer multiples of the flux quantum.
Quantum metrology and quantum standards take advantage of Cooper pairs

and flux quanta. The tunneling of Cooper pairs between two superconductors is
called the Josephson effect [1]. This phenomenon links the macroscopic physical
quantity voltage to the counting of flux quanta per time interval. Thereby,
the SI unit volt is realized due to the link to the defining constants e and h.
Josephson voltage standards, the realization of the SI volt, and metrology based
on Josephson voltage standards are addressed in Section 4.1.
In Section 4.2, we discuss that flux quanta can also be used to implement

quantum-based magnetic measurements. The ratio between the magnetic
flux and the flux quantum determines the outcome of interference effects in
superconducting quantum interference devices (SQUIDs). This interference
allows highly sensitive measurements of magnetic flux and, in turn, results in
measurements of magnetic field and magnetic moment. The measurements are
linked to the flux quantum. The chapter is concluded by a brief introduction to
the realization of the tesla, the SI unit of the magnetic flux density, by nuclear
magnetic resonance (NMR).

4.1 Josephson Effect and Quantum Voltage Standards

4.1.1 Basics of Superconductivity

The physical properties of superconductors are the basis of the phenomena
treated in this chapter. Therefore, we introduce the basic physics of supercon-
ductors in this section. Superconductivity was discovered by the Dutch physicist

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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HeikeKamerlinghOnnes in 1911 after he had succeeded in liquefying 4He in 1908.
For his achievements in low-temperature physics, Kamerlingh Onnes received
the Nobel Prize in physics in 1913. Superconductivity is the disappearance of
electric resistance below a critical temperature Tc and expulsion of magnetic
fields from the interior of a superconducting material (Meissner–Ochsenfeld
effect; see Section 4.2.1). Kamerlingh Onnes discovered superconductivity when
he studied the temperature dependence of the resistance of mercury (Hg), which
has a critical temperatureTc = 4.2 K. Subsequently, superconductivity was found
in other metals, such as tin (Sn, Tc = 3.7 K), lead (Pb, Tc = 7.2 K), and niobium
(Nb, Tc = 9.5 K).
After several classical or semiclassical approaches to describe superconductiv-

ity [2, 3], superconductivity was quantum mechanically described by Bardeen
et al. in 1957 [4, 5]. In 1972, John Bardeen, Leon. N. Cooper, and John Robert
Schrieffer received the Nobel Prize in physics for their “BCS theory.”
The basic concept of the BCS theory involves the formation of Cooper pairs

from electrons close to the Fermi surface and their condensation into a macro-
scopic quantum state described by a single wave function. Cooper pairs con-
sist of two electrons with opposite spin S and wave vector k, resulting in S = 0,
k = 0, and a total charge eS = −2e if e denotes the elementary charge. In classi-
cal low-temperature superconductors, the attractive force to bind two electrons
is mediated by the electron–phonon interaction, which overcomes the repulsion
of the negatively charged electrons. We note, however, that the BCS theory is
independent of the nature of the attractive force between the electrons.
The Cooper pairs are separated in energy from the single-particle electron

states by an energy gap 2Δ(T). With increasing temperature, Δ(T) decreases
from Δ(T = 0) = 1.76kTc (k Boltzmann constant) to zero at Tc according to

Δ(T) = Δ(T = 0)

√√√√cos

(
π
2

(
T
Tc

)2
)

(4.1)

The continuous decrease in the order parameter, Δ, is characteristic of a
second-order phase transition. At any temperature, superconductivity is unsta-
ble against external magnetic fields and disappears at some critical magnetic
field strength, different for type I and II superconductors. Moreover, super-
conductivity breaks down in electric fields that cause a potential drop over the
superconductor comparable to its energy gap 2Δ(T).
For the forthcoming discussion of the Josephson effect, the key element is the

wave function 𝜓 , which describes the macroscopic quantum state of a supercon-
ductor according to the BCS theory. The wave function can be written as

𝜓 =
√
nSei𝜃 (4.2)

with nS = 𝜓𝜓* being the density of Cooper pairs, where the asterisk indicates the
complex conjugate, and 𝜃 the phase of the macroscopic wave function.
The BCS theory describes metallic low-temperature superconductors, on

which today’s most advanced applications in metrology are based. For complete-
ness, we like to mention that in 1986 Georg Bednorz and Alexander Müller at
the IBM laboratories in Rüschlikon discovered superconductivity in a perovskite
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ceramic material (a Ba–La–Cu oxide) at a temperature of 35K [6]. In 1987, they
received the Nobel Prize in physics for this discovery. Their work set a starting
point for intense research in the so-called high-temperature superconductors
with the most prominent cuprate material being yttrium barium copper oxide
(YBCO). YBCO was the first material in which superconductivity was observed
at a critical temperature Tc = 93K above the temperature of liquid nitrogen [7].
An impressively high critical temperature of Tc = 133K has been achieved with
a Hg–Ba–Ca–Cu–O-based cuprate [8]. The theoretical description of high-Tc
superconductors is still a matter of discussion. Yet, it seems clear that the CuO
planes and the precise oxygen content play a decisive role.
Iron-based materials (so-called pnictides, e.g., Sm(O1− xFx)FeAs) with critical

temperatures up toTc = 55K have been discovered [9]. Even though their critical
temperatures are still considerably lower than those of cuprates, mechanical
properties of some oxygen-free pnictides, such as SrFe2As2, are superior to those
of brittle cuprates. This property may allow easier fabrication of, for example,
cables.

4.1.2 Basics of the Josephson Effect

The Josephson effect was theoretically predicted by Brian D. Josephson in 1962
[1]. It refers to the tunneling of Cooper pairs without resistance between two
superconductors, which are separated by a thin tunnel barrier.This arrangement,
called the Josephson junction, is schematically shown in Figure 4.1.
A key element of a Josephson junction is the tunnel barrier, which can be an

insulator, a normal metal, or a semiconductor. Its thickness is typically a few
nanometers, chosen to be large enough to prevent direct exchange of Cooper
pairs.On the other hand, the barrier is thin enough to allow themacroscopicwave
function 𝜓1 of superconductor 1 to couple to superconductor 2, and vice versa.
Such a barrier is said to provide a weak link. The coupling is a purely quantum
mechanical phenomenon. It reflects the fact that a quantum mechanical wave
function does not end abruptly at the edge of a sample or structure but leaks into
the neighboring region, where it decays exponentially.
The supercurrent of Cooper pairs across the tunnel barrier is determined by the

time-dependent Schrödinger equation.More specifically, two separate equations
must be written for superconductors 1 and 2, which read in short notation

iℏ
𝜕𝜓1,2(t)
𝜕t

= E1,2𝜓1,2(t) + K𝜓2,1 (4.3)

E1Ψ1(t) + KΨ2(t) E2Ψ2(t) + KΨ1(t)

Figure 4.1 Schematic drawing of a Josephson junction. Two superconductors are separated
by a thin tunnel barrier (gray) with a typical thickness of a few nanometers.Ψi is the wave
function and Ei the energy of superconductor i. With K , we denote the coupling constant,
which depends on the barrier thickness and height. Source: Göbel and Siegner [10].
Reproduced with permission of John Wiley & Sons.
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The coupling constant K describes the quantummechanical coupling between
the superconductors and, hence, couples the two equations. If an external volt-
age U is applied across the junction, the energies E1 and E2 denote the poten-
tials of superconductors 1 and 2, respectively, arising from the voltage. Thus,
|E2 −E1| = 2eU . If the two superconductors are identical, the voltage drop is
symmetric, E2 = eU and E1 = −eU .
Solving the coupled Schrödinger equation (4.3) with an ansatz for the wave

functions according to Eq. (4.2) shows that the Cooper pair densities n1 and n2 of
superconductors 1 and 2, respectively, are time dependent.The time dependence
results in a Cooper pair current

IS(t) ∝
𝜕

𝜕t
n1(t) = − 𝜕

𝜕t
n2(t) (4.4)

given by

IS(t) = ISmax sin(𝜃1(t) − 𝜃2(t)) (4.5)

In this equation, ISmax is the critical current, which is proportional to the cou-
pling constantK , and 𝜃i(t) is the phase of thewave function of the superconductor
labeled i.The time evolution of the Cooper pair current is determined by the time
evolution of the phase terms. The time dependence of the phase difference

𝜑(t) = 𝜃1(t) − 𝜃2(t) (4.6)

is given by
𝜕𝜑(t)
𝜕t

= 2e
ℏ

U (4.7)

Equations (4.5) and (4.7) are called the Josephson equations, and the prefactor
2e/h (not 2e/ℏ) is known as the Josephson constant K J. Its inverse, h/2e, is the
flux quantumΦ0. Combining Eqs. (4.5) through Eq. (4.7), we obtain for the tunnel
current of Cooper pairs (or Josephson current)

IS(t) = ISmax sin
(
2e
ℏ ∫

t

0
U(𝜏)d𝜏 + 𝜑0

)
(4.8)

The constant phase𝜑0 is the integration constant determined by the initial con-
ditions of the experiment. In the following section, we analyze the predictions of
Eq. (4.8) for different types of external voltages across a Josephson junction.

4.1.2.1 AC and DC Josephson Effect
If a constant DC voltageU ≠ 0 is applied across a Josephson junction, the Cooper
pair current amounts to

IS(t) = ISmax sin
(2e
ℏ

U ⋅ t + 𝜑0

)
(4.9)

Thus, IS(t) is a high-frequency AC current with angular frequency 𝜔J = 2eU/ℏ
and frequency f J = 2eU/h. Equation (4.9) describes the so-called AC Josephson
effect, that is, the conversion of voltage to frequency.The temporal average of the
AC Josephson current is zero since it contains no DC contribution.
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Figure 4.2 Voltage–current characteristic of
an ideal Josephson junction illustrating the
DC and AC Josephson effects. The current
axis shows the time-averaged current.
Source: Göbel and Siegner [10]. Reproduced
with permission of John Wiley & Sons.

U

0

IS
−ISmax

+ISmax

If no voltage is applied, U = 0, a DC Cooper pair current is generated whose
magnitude and direction depend on the constant phase term 𝜑0. For 𝜑0 ≠ 0, a
current flows without voltage drop, which is called the DC Josephson effect. For
the ideal Josephson junction treated so far, the DC and AC Josephson effects are
illustrated in Figure 4.2, in which the voltage is plotted versus the time-averaged
current.

4.1.2.2 Mixed DC and AC Voltages: Shapiro Steps
The essence of Josephson voltage standards becomes apparent if a mixed voltage
containing DC and AC contributions is inserted in Eq. (4.8). We write this mixed
voltage as

U(t) = U + uM cos(𝜔Mt) (4.10)

where𝜔M is the angular frequency of the AC part. For the Josephson current one
then finds

IS(t) = ISmax

∞∑
n=−∞

(−1)nJn
(2euM

ℏ𝜔M

)
sin((𝜔J − n𝜔M)t + 𝜑0) (4.11)

where Jn is the Bessel function of order n. Equation (4.11) shows that the Joseph-
son junction carries a DCCooper pair current whenever𝜔J − n𝜔M = 0 holds, that
is, if

Un = n h
2e

fM =
nfM
KJ

(4.12)

where n is an integer. The discrete voltages Un are called Shapiro steps, named
after Sidney Shapiro who first experimentally observed them in 1963 [11].
The integer n is the step number. Figure 4.3 illustrates the voltage–current
characteristic.
From a physical point of view, the Shapiro steps Un are the result of the fre-

quencymodulation of theAC Josephson current with frequency𝜔J by the applied
AC voltage with frequency 𝜔M.This frequency modulation generates sidebands,
among which DC terms are found for 𝜔J − n𝜔M = 0. In the context of quantum
metrology, Eq. (4.12) can be interpreted such that the DC voltage is given by
the number of flux quanta transported through the Josephson junction per time
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Figure 4.3 Voltage–current characteristic of an
ideal Josephson junction for the application of a
mixed voltage illustrating the generation of
quantized voltages. The current axis shows the
time-averaged current. Source: Göbel and Siegner
[10]. Reproduced with permission of John Wiley &
Sons.

interval. Here, the Josephson junction acts as an ideal frequency–voltage con-
verter, which can be viewed as the inverse of the AC Josephson effect discussed
in Section 4.1.2.1. Finally, from the viewpoint of the present SI, Eq. (4.12) links
the voltage to the defining constants e and h.

4.1.3 Basic Physics of Real Josephson Junctions

When proceeding from ideal Josephson junctions, which have been dealt with
in Section 4.1.2, to real ones, other current contributions must be taken into
account. In addition to the Cooper pair current IS, a displacement current IC
must be considered due to the finite capacitance C of the junction. Moreover, an
unpaired-electron tunnel current IN flows across the junction at finite tempera-
tures. The treatment of real Josephson junctions should also consider that a cur-
rent bias is applied in experiments on Josephson junctions.These considerations
are taken into account by the resistively and capacitively shunted junction (RCSJ)
model proposed by Stewart and McCumber [12, 13]. The RCSJ model describes
the real Josephson junction by the electric circuit of Figure 4.4. In this parallel
circuit, the bias current Ibias is split into the Cooper pair current IS of an ideal
Josephson junction, the displacement current IC through the capacitance C, and
the unpaired-electron current IN, which is expressed as the current through an
ohmic resistanceR.Thus, for finite temperatures belowTc, the RCSJmodel yields
the following equation for the dynamic behavior of a real Josephson junction:

Ibias(t) = ISmax sin(𝜑(t)) +
U
R

+ C dU
dt

(4.13)

Ibias

IN IC IS

Figure 4.4 RCSJ model to describe a real
Josephson junction accounting for displacement
(IC) and unpaired-electron (IN) currents. Source:
Göbel and Siegner [10]. Reproduced with
permission of John Wiley & Sons.
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The RCSJ model is useful to distinguish between two different types of real
Josephson junctions – junctions that show either hysteretic or nonhysteretic
dynamic behavior. This becomes apparent if in a linear approximation to
Eq. (4.13), the term sin(𝜑) is replaced by 𝜑, the Josephson inductance
LJ = ℏ/(2eISmax) is introduced, and the Josephson equation (4.7) is used to
replaceU by the time derivative of 𝜑, resulting in the equation of an RLC oscilla-
tor. Using the general expression for the eigenfrequency of an RLC oscillator, the
eigenfrequency or plasma frequency of a real Josephson junction can be written
as

fP = 1
2π

√
LJC

=
√

eISmax

πhC
. (4.14)

The quality factor of an RLC oscillator, which is defined as the ratio between its
eigenfrequency and the full width at half maximum of its resonance, is given by

Q = 2πfPRC (4.15)

For the description of a real Josephson junction in the frame of the RCSJmodel,
the so-calledMcCumber parameter, 𝛽C, is introduced as the square of the quality
factor:

𝛽C = Q2 = 2e
ISmaxR2C

ℏ

(4.16)

The McCumber parameter is used to distinguish between hysteretic and non-
hysteretic junctions. If 𝛽C > 1 holds, the junction is underdamped and shows the
hysteretic behavior illustrated in Figure 4.5a,b. If only aDCbias current is applied,
the supercurrent increases till the critical current is reached for increasing bias.
For higher bias currents, the junction switches to the normal conducting state,
and the voltage–current characteristic approaches the normal-state resistance. If
the bias current is decreased again, hysteretic behavior is observed.
If microwave excitation is added to the DC bias current, different Shapiro

steps can be observed, which overlap around zero bias current. As discussed
in more detail in Section 4.1.4.2, this behavior is used to realize Josephson
voltage standards, which generate fixed DC voltages. The current range, over
which a constant-voltage step extends, and the observed step number depend
on the applied microwave power. Metastable Shapiro steps are observed for
certain ranges of microwave power andmodulation frequency𝜔M. Beyond these
ranges, the Josephson junction shows chaotic behavior [14]. Underdamped
junctions satisfying the relation 𝛽C > 1 are realized if the tunnel barrier is an
insulator with a large resistance R and for a finite capacitance C of the junction,
as shown by Eq. (4.16). This type of Josephson junction is often referred to as the
superconductor/insulator/superconductor (SIS) junction.
Overdamped Josephson junctions satisfy the relation 𝛽C ≤ 1. They can be real-

ized by lowering the junction resistance using a normal metal (N) or a combina-
tion of a normal metal and insulating layers as tunnel barrier.These junctions are
referred to as superconductor/normal metal/superconductor (SNS) and super-
conductor/insulator/normal metal/insulator/superconductor (SINIS) junctions,
respectively. As illustrated in the lower part of Figure 4.5, overdamped junctions
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Figure 4.5 Schematic voltage–current characteristic of real Josephson junctions. Upper part:
hysteretic (underdamped) junctions. Lower part: nonhysteretic (overdamped) junctions.
Left-hand side: behavior if only a DC bias current is applied. Right-hand side: behavior for
excitation with microwaves in addition to the DC bias current. Note that the characteristic of
hysteretic (underdamped) junctions is observed when microwave power and DC bias are
tuned and the different voltages generated during the tuning are superimposed. Source:
Courtesy of PTB.

exhibit nonhysteretic behavior. In particular, for excitation with microwaves, an
unambiguous relation between the DC bias current and the voltage step number
is obtained.This feature provides the basis for the development of programmable
binary Josephson voltage standards and pulse-driven AC Josephson voltage
standards, which are discussed in Sections 4.1.4.3 and 4.1.4.4, respectively.
An in-depth analysis of the physics of real Josephson junctions can be found,

for example, in Refs. [15–18].

4.1.4 Josephson Voltage Standards

The Josephson effect links the voltage to frequency, the defining constants e and
h, and an integer, as shown in Eq. (4.12). Since the frequency can be realized with
extremely high precision with atomic clocks (nowadays with a relative uncer-
tainty smaller than 10−15; see Chapter 3), Eq. (4.12) bears the potential for the
very precise generation of voltages. Moreover, in the 1960s, it was already exper-
imentally demonstrated that the Josephson effect itself was highly reproducible
at the level of one part in 108 [19]. Subsequent measurements demonstrated even
better reproducibility up to the level of parts in 1016 [20] and parts in 1019 [21].
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These findings prompted substantial efforts to construct voltage standards based
on the Josephson effect. The main obstacle encountered was the small magni-
tude of the voltage generated by a single Josephson junction even for frequencies
in the gigahertz range. For example, the voltage of the lowest Shapiro step is only
145 μV at a frequency of 70GHz. Therefore, a considerable amount of work was
spent on the development of arrays of Josephson junctions. A Josephson array is
a series circuit of many junctions, in which the voltages of the junctions add up to
reach practical voltage levels up to 10V, as required for a voltage standard.Three
different types of Josephson voltage standards can be distinguished:

• Standards with SIS Josephson junctions for the generation of fixedDC voltages
• Programmable binary Josephson voltage standards for the generation of vari-

able DC voltages and simple time-dependent voltage waveforms
• Pulse-driven AC Josephson voltage standards for the generation of arbitrary

time-dependent voltage waveforms.

In Section 4.1.4, we review the technology of these Josephson voltage stan-
dards, the main ideas that advanced their development, and their present state of
the art. Their impact on metrology is discussed in Section 4.1.5. More details of
the development of Josephson voltage standards are presented in several review
papers. The interested reader is referred to, for example, Refs. [22–24].

4.1.4.1 General Overview: Materials and Technology of Josephson Arrays
A single Josephson junction generates voltages in the submillivolt range. There-
fore, the voltages of thousands or tens of thousands junctions must be added
up in a series circuit to obtain practical voltage levels. To this end, integrated
circuits are fabricated using thin film technology, including sputter deposition
of superconducting layers and dielectrics, patterning by photo or electron-beam
lithography, and etching.
In the 1980s, integrated Josephson arrays were based on lead/lead alloy tech-

nology [25]. Yet, this technology did not provide the required long-term stabil-
ity since lead alloys can be damaged by humidity and thermal cycling between
room temperature and low temperatures. Niobium proved to be a better choice
of the superconducting material of an array of Josephson junctions. This metal
combines chemical stability with a large critical temperature of 9.5 K. Niobium
can easily be covered with aluminum serving as a normal metal, which even
has a stable natural oxide that can be used to form an insulating layer. Thus,
Nb/Al/Al oxide technology [26] provides all ingredients required to fabricate SIS
and SINIS Josephson arrays. For the fabrication of SNS Josephson arrays, nio-
bium can be combined with, for example, PdAu [27] or NbSi [28]. Therefore,
niobium is presently chosen as the superconducting material for Josephson volt-
age standards. Niobium standards can be operated at the temperature of liquid
helium, that is, 4.2 K. Operation at a higher temperature around 10K becomes
feasible with NbN arrays [29]. The higher temperature allows the NbN arrays
to be operated in cryocoolers. The high-temperature superconductor cuprate
materials have not yet led to a breakthrough in voltage standards since their inho-
mogeneity precludes the development of highly integrated circuits with many
uniform Josephson junctions.
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The choice of material determines the operating margins of a Josephson array.
Themaximum frequency (named characteristic frequency), f c, at which the array
can be operated, is limited by the so-called characteristic voltage V c according to

fc = Vc
2e
h

(4.17)

The characteristic voltage V c is given by the critical current and the
normal-state resistance:

Vc = ISmaxR (4.18)

The critical current depends on the critical current density jSmax of the super-
conducting material. Only in theory the critical current ISmax = jSmaxA can be
adjusted at will by adjusting the areaA of the Josephson junction for a givenmate-
rial with given critical current density jSmax. In practice, if the area A is increased,
the size of the Josephson array increases, which compromises the uniformity of
the junctions across the array and complicates the microwave design. Thus, to
obtain the desired output voltage of a Josephson array, the driving frequency,
number of junctions, step number, material parameters, and dimensions must be
chosen carefully. In the following sections, we discuss in more detail how these
constraints are dealt with for the different types of Josephson voltage standards.
As a concluding remark regarding general technological aspects, we address

microwave issues. The design of a Josephson array must be chosen such
that all junctions are excited by almost the same microwave power. To this
end, the Josephson junctions are embedded in high-frequency transmission
lines, such as low-impedance microstrip lines or 50Ω coplanar waveguides
and coplanar striplines. Measures must be taken to avoid reflections and the
formation of standing waves.The number of Josephson junctions, which a single
microwave transmission line can accommodate, is limited by the attenuation
of the microwave power along the line. The transmission line must not be too
long since otherwise power losses become too large. This constraint limits
the number of Josephson junctions per line. To excite many junctions equally
with microwaves, several microwave branches can be operated in parallel. The
microwave is split, and the resulting partial waves are fed into different branches.
Microwave components for power splitting are routinely available for sinusoidal
microwaves with a narrow frequency spectrum.

4.1.4.2 SIS Josephson Voltage Standards
SIS Josephson voltage standards are used to generate fixed DC voltages up to
10V. Their development started in the 1980s, and they were the first Josephson
standards that substantially impacted metrology. Nowadays, they are routinely
used by national metrology institutes around the world to realize and maintain
the DC voltage scale. SIS Josephson voltage standards have been commercialized
and are also used by calibration laboratories in industry.
The development of SIS Josephson voltage standards was advanced by two

ideas. The first one was the suggestion to take advantage of the overlapping
Shapiro steps of the hysteretic SIS Josephson junctions around zero bias current
[30]. This concept eliminates the need to bias different junctions individually,
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Figure 4.6 Schematic layout of an SIS Nb/Al–Al2O3/Nb Josephson array. Shown are four
junctions embedded in a microstrip line whose ground plate is seen at the top of the structure.
(1) Silicon substrate; (2) sputtered Al2O3 layer, typical thickness 30 nm; (3) niobium tunnel
electrode, 170 nm; (4) Al2O3 barrier, 1.5 nm, fabricated by thermal oxidation of an Al layer;
(5) niobium tunnel electrode, 85 nm; (6) wiring layer, 400 nm; (7) niobium ground plane,
250 nm; (8) Nb oxide edge protection, 80 nm. The Nb ground plane (7) rests on a 2-μm-thick Si
oxide dielectric layer (9). Source: Courtesy of J. Kohlmann, PTB.

which facilitates the integration of many Josephson junctions in a series array.
The second important idea was to embed the junctions in a high-frequency
transmission line to ensure uniform microwave excitation.
In 1984, the first Josephson array providing 1V output was demonstrated.

The array was based on lead/lead alloy technology and a microstrip line was
employed to distribute the microwave power [25]. Later, Nb/Al/Al oxide tech-
nology has been used to fabricate SIS Josephson arrays for the generation of DC
voltages of 10V.The typical current step width is some tens of microamperes. In
most designs, microstrip lines are chosen as high-frequency transmission lines.
A schematic layout of such an array is shown in Figure 4.6. Thanks to the large
normal-state resistance of the SIS junctions, the characteristic voltage is so large
that driving frequencies f of 70GHz can be applied. The SIS Josephson arrays
can be operated on higher-order Shapiro steps. For typical parameters, such as
f = 70GHz and step number n = 5, 14 000 junctions are sufficient to obtain 10V
output.
Figure 4.7 shows a photograph of a 10V Josephson array fabricated by the

Physikalisch–Technische Bundesanstalt (PTB). The Josephson chip is mounted

Figure 4.7 Photograph of a
10 V Josephson array
mounted onto a chip carrier.
The size of the array is 24mm
by 10mm. Source: Courtesy
of PTB.
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onto a chip carrier. The fin-line-taper antenna, seen on the left-hand side, is
coupled to awaveguide (not shown), throughwhich themicrowave is transmitted
to the Josephson array. For operation, the complete array is immersed into liquid
helium. DC measurements with SIS Josephson voltage standards are treated in
Section 4.1.5.1.

4.1.4.3 Programmable Binary Josephson Voltage Standards
For some DC measurements, it is advantageous to quickly switch between
different DC voltage levels. Moreover, many important measurements in
electrical metrology involve AC voltages. A prime example is the measurement
of electric power and energy at the line frequency of 50 or 60Hz of the power
grid. Conventionally, the AC volt (and also the AC ampere) is realized and
disseminated using thermal converters. In a thermal converter, the heat gener-
ated by an AC electrical quantity is compared to the heat produced by its DC
counterpart, which can be determined with high precision. This calorimetric
approach yields the root-mean-square (rms) value of the AC quantity. Thermal
converters can measure the rms value of AC voltages ranging from millivolts
to kilovolts and over the frequency range from 10Hz to several MHz with
relative uncertainties as good as one part in 106. Unlike thermal converters,
AC Josephson voltage standards have the potential to determine the complete
waveform of an AC voltage with high precision. Moreover, they hold promise
to establish quantum-based measurements of other electrical quantities, such
as impedance and electric power, and quantum-based characterization of
measuring instruments, such as analog–digital converters. Consequently, since
the 1990s, efforts have been made to harness the Josephson effect and its high
reproducibility for AC voltage metrology.
The simplest implementation of a Josephson standard with AC measurement

capabilities is the programmable binary Josephson voltage standard. Its operation
is based on the rapid and reliable switching between different Shapiro steps. Hys-
teretic SIS Josephson junctions are not suited to implement this concept due to
their ambiguous voltage–current characteristic, that is, due to the overlap of the
voltage steps. This property precludes reliable switching between Shapiro steps.
Therefore, nonhysteretic Josephson junctions are used to realize programmable
binary Josephson voltage standards. Varying the DC bias current, the n = 0, 1,
or− 1 Shapiro step can be addressed in these junctions (see Figure 4.5).
We consider an array of nonhysteretic SNS or SINIS Josephson junctions. If

m(t) is the number of junctions activated at the time t, that is, with step number
n≠ 0, the time-dependent output voltage of the array is

U(t) = nm(t)K−1
J f (4.19)

Usually, the Shapiro step number n is ±1. As for SIS Josephson arrays, f is
assumed to be the constant frequency of a sinusoidal microwave. The schematic
layout of a programmable binary Josephson array is depicted in Figure 4.8. The
array is divided into N + 1 segments with 20, 21, 22, …, 2N Josephson junctions.
The segments can be addressed individually. If each junction generates a volt-
age U1, any voltage between −(2N+1 − 1)U1 and +(2N+1 − 1)U1 can be gener-
ated with a resolution given by U1. For a typical frequency of 15GHz, U1 is
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Figure 4.8 Schematic layout of a binary divided programmable Josephson array. Each of the
bold X represents a single Josephson junction delivering a voltage U1. The numbers of
junctions per segment form a binary sequence. Each segment has its own power supply, which
provides the bias current to select the Shapiro step number n = 1, −1 (or 0 to deactivate the
segment). Source: Göbel and Siegner [10]. Reproduced with permission of John Wiley & Sons.

31 μV. The programmable binary Josephson array can be considered a multibit
digital-to-analog converter. Figure 4.9 shows a stepwise approximated 50Hz sine
wave with 16 steps per period as an example of a temporally varying voltage gen-
erated with a programmable Josephson array.
The fabrication of programmable binary Josephson arrays entails technological

challenges not encountered with SIS arrays. Programmable arrays are operated
on the step number n = ±1, rather than on a step number n> 1 as SIS arrays.
Therefore, the number of Josephson junctions needs to be increased to achieve
the same voltage level as with an SIS array that is driven at the same frequency.
Other constraints arise regarding the choice of the driving frequency. The prod-
uct of critical current ISmax and normal-state resistance R of an SNS array is
usually smaller than that of SIS arrays. Consequently, the characteristic voltage
and the driving frequency are reduced, as seen from Eqs. (4.17) and (4.18). The
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Figure 4.9 Stepwise approximated 50Hz sine wave generated by a programmable binary
Josephson voltage standard. Source: Courtesy of R. Behr, PTB.
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decrease in the driving frequency must be compensated by a further increase in
the number of junctions. The first practical programmable binary 1V array of
the SNS type contained 32 768 junctions with PdAu barriers and was operated at
16GHz [27]. Later, programmable binary 10V arrays for operation at 16–20GHz
were designed and fabricated by theNational Institute of Standards and Technol-
ogy (NIST, USA) and the National Institute of Advanced Industrial Science and
Technology (AIST, Japan) [29, 31]. Such arrays consist of 300 000 junctions.With
increasing number of junctions, uniformity of junctions across an array is more
difficult to achieve. Moreover, the microwave design becomes more complicated
since a larger number of microwave branches must be operated in parallel.
To reduce the required number of junctions, the PTB developed SINIS arrays

based on Nb/Al/Al oxide technology. This technology allows the ISmaxR product
to be tuned for operation at 70GHz. In 2007, the PTB presented a programmable
binary 10V SINIS array with “only” 70 000 junctions [32]. Yet, the fabrication
yield of these SINIS arrays was rather low due to their thin, only 1–2-nm-thick,
and damage-prone Al oxide insulating layers. Therefore, the PTB and NIST
jointly developed NbSi as an alternative barrier material [28]. NbSi barriers have
a thickness on the order of 10 nm and are less damage prone. Moreover, NbxSi1−x
allows large ISmaxR products to be realized when the Nb content is tuned close
to the metal–insulator transition at x = 11%. Nowadays, the PTB employs NbSi
as barrier material for programmable 10V arrays. The arrays have a current step
width of 1mA or larger and can reliably be operated at 70GHz thanks to the
large ISmaxR product.
This brief rundown shows that the fabrication of programmable binary

Josephson standards with 10V output is a mature technology nowadays. These
voltage standards are commercially available and are used for calibration
and testing in industry (see Section 4.1.5). At national metrology institutes,
programmable binary Josephson arrays with 20V output have also been
demonstrated [33, 34].
A key element of programmable binary Josephson standards is the pro-

grammable current source used to individually address the binary segments
of the array. In principle, stepwise approximations of any waveform can be
generated. In practice, the switching time of the current source must be con-
sidered, that is, the time required to change the bit pattern that is inputted
to the Josephson array. This time together with the number of voltage levels,
which is chosen to approximate one cycle of the output waveform, limits the
frequency of the output voltage. For example, for a typical switching time of
2 μs, corresponding to a rate of 500 kHz, the maximum frequency of the output
voltage is limited to the 10 kHz range considering that each cycle of the output
waveform is composed of several tens of voltage levels.
When settled on a voltage level, the output of a programmable binary

Josephson array has the samehigh reproducibility as achievedwith an SIS Joseph-
son standard, which generates a fixed DC voltage. Yet, during the switching
between two voltage levels, the output voltage of the programmable Josephson
array is not determined by Eq. (4.19). It is given by the so-called transients whose
amplitude and shape are not exactly known. The transient regime can be limited
to a time window of less than 100 ns using modern electronics with rise times in
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the 10 ns range. Nonetheless, the transients compromise the uncertainty of rms
measurements with programmable binary Josephson arrays. The effect of the
transients increases with the number of switching events per time, that is, with
the number of voltage levels per cycle and the frequency of the output voltage.
Consequently, the frequency is limited to the kilohertz range. In Section 4.1.5, we
discuss in more detail how the transients affect different types of measurements.

4.1.4.4 Pulse-Driven AC Josephson Voltage Standards
Programmable binary Josephson standards are not perfect AC voltage sources
since they allow only stepwise approximations of waveforms to be generated and
suffer from the undefined transients. This shortcoming has motivated work on
a conceptually different approach toward AC voltage generation with Josephson
standards. This approach is known as pulse-driven AC Josephson voltage stan-
dard and is also implemented with nonhysteretic Josephson junctions.
The basic idea of pulse-driven AC Josephson standards is to vary the

frequency f , at which the Josephson array is driven, while the numberm of acti-
vated Josephson junctions is kept fixed. Yet, simulations based on the RCSJmodel
show that this approach faces severe limitations if a sinusoidal microwave drive
is considered. Stable operation of a nonhysteretic Josephson array, that is, a suffi-
ciently large current step width, is obtained only for frequencies close to the char-
acteristic frequency (see Eqs. (4.17) and (4.18)) for sinusoidal excitation [35, 36].
However, frequency tuning over a wide range can be realized if a train of suffi-
ciently short current pulses is used to drive the Josephson array [36, 37].The out-
put voltage of a pulse-driven AC Josephson array withm junction is then given by

U(t) = nmK−1
J fR(t) (4.20)

In this equation, f R(t) is the repetition frequency of the pulse train, that is,
the inverse of the temporal spacing between successive pulses. The integer n is
the step number, which is usually ±1. Stable operation is obtained if the width
of the individual pulses is shorter than the inverse of the characteristic frequency
[36].The repetition frequency f R(t) can then be tuned between zero and the char-
acteristic frequency.
The basic physics of pulse-driven operation is seen considering the effect of a

single current pulse. Each current pulse induces a phase change of 2πn′ across
the Josephson junction [38]. This phase change corresponds to the generation of
a voltage pulse with an area of n′ flux quanta Φ0 = h/(2e) = K J

−1 according to
Eq. (4.7). If this process is repeated at the frequency f R(t), a voltage according to
Eq. (4.20) is obtained with n = n′. The voltage is determined by the number of
flux quanta transferred through the Josephson junctions per time.
Pulse pattern generators are used to drive the Josephson arrays. These current

sources allow the generation of various current pulse sequences and, thereby, the
variation of the repetition frequency f R(t). Since the repetition frequency can
be arbitrarily varied in time, pulse-driven AC Josephson standards can gener-
ate arbitrary waveforms. In particular, they can generate pure sinusoidal voltages
without undefined transient contributions.The corresponding spectrum consists
of a single narrow line at the fundamental frequency and does not contain higher
harmonics. The fundamental frequency can be varied from DC to megahertz.
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Figure 4.10 Scheme of the generation of a quantized waveform with arbitrary shape using a
pulse-driven Josephson array, shown for the example of a sine wave. The arbitrary waveform
(a) is encoded in a pulse train with a ΣΔ converter, whose code controls the output of a pulse
pattern generator. The pulse pattern generator outputs the current pulse sequence shown in
(b). The current pulses drive a Josephson array, which generates voltage pulses having the
area of the flux quantumΦ0 (c). Low-pass filtering produces the quantized waveform of
(d) according the Eq. (4.20). Source: Courtesy of O. Kieler, PTB.

To generate an arbitrary waveform, a ΣΔ converter is generally used to encode
the waveform in a train of short current pulses with variable pulse separation.
Figure 4.10 shows the operation principle for a sine wave. Note that the volt-
age pulses generated by the pulse-driven Josephson array (Figure 4.10c) have the
area of the flux quantumΦ0.The quantized waveform of Figure 4.10d is obtained
by low-pass filtering of the voltage pulses of Figure 4.10c. The filtering removes
quantization noise.
Before we comment on the experimental results achieved with pulse-driven

AC Josephson standards, we review some technological aspects. Various pulse
pattern generators are commercially available with repetition rates up to 65GHz
and the capability to output bipolar current pulse sequences. The use of bipolar
current pulses allows truly alternating voltages to be generated. If no bipolar pulse
pattern generator is available, the output of a unipolar pulse pattern generator
can be combined with a sinusoidal microwave to produce a bipolar current pulse
train. Yet, this scheme involves the sensitive synchronization of the two signals,
which compromises the stability of the pulse drive. Pulse pattern generators with
up to eight synchronized channels can be used to operate several pulse-driven
Josephson arrays in parallel so that their outputs can be combined [39].
Nonhysteretic Josephson junctions of the SNS type with typical characteristic

frequencies on the order of 10GHz are used for pulse-driven Josephson voltage
standards. The maximum repetition frequency of the train of current pulses can
then be chosen to be of the same order as the characteristic frequency of the
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junctions. NbSi barriers are employed in most pulse-driven Josephson standards
[40–42].
The microwave design of pulse-driven Josephson voltage standards involves

issues not encountered with SIS or programmable Josephson standards. These
issues result from the broadband spectrum of the current pulses. The pulse
spectrum extends from DC to beyond the maximum repetition frequency, that
is, to several tens of gigahertz. Ordinary microwave splitters do not support
such a large bandwidth. It is then not possible to operate several array branches
in parallel driven by the output of a single current source. The operation of only
a single branch limits the number of Josephson junctions in an array. This is
due to the attenuation of the high-frequency components of the pulse spec-
trum along the array. The attenuation precludes the use of an arbitrarily large
number of junctions even if the area of each junction is reduced as compared
to programmable array designs. This constraint restricts the output voltage of a
pulse-driven Josephson array.
There are several options to increase the output voltage. To operate more

Josephson junctions per array, stacks of two [40, 41], three [42], or four
Josephson junctions can be fabricated. The scanning electron microscope image
of Figure 4.11 shows quadruple stacks of Nb/NbSi/Nb Josephson junctions
fabricated at the PTB.
Moreover, the output voltages of several arrays can be combined. For example, a

total output voltage of 275mV rmswas achieved by combining the outputs of two
pulse-driven arrays with 6400 junctions per array [39].The arrays were driven by
two synchronized current pulse trains [39].This approach was the key to achiev-
ing a practical voltage level of 1V rms after several years of engineering work.
The NIST combined the output of four arrays to this end [43, 44]. In total, the
four arrays contained either 25 600 Josephson junctions operated at the Shapiro
step n = 2 [43] or twice as many junctions operated at n = 1 [44]. The PTB com-
bined the output of eight arrays with overall 63 000 junctions (operated at n = 1)

300 nm

Figure 4.11 Scanning electron microscope image showing part of a Josephson array with
quadruple stacks of Nb/NbSi/Nb junctions. The NbSi barriers appear dark while the niobium
appears lighter. The image was taken at an intermediate step of the fabrication process and
does not show all details of a complete Josephson array. Source: Courtesy of O. Kieler, PTB.
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Figure 4.12 Sine wave with a frequency of 250Hz, synthesized combining the outputs of
eight pulse-driven Josephson arrays with overall 63000 (Nb/NbSi/Nb) junctions: (upper panel)
temporal waveform and (lower panel) spectrum. The peak–peak amplitude is 2.83 V
corresponding to 1 V rms. The spectrum demonstrates that higher harmonics are suppressed
by at least −121 dBc. Source: Courtesy of O. Kieler, PTB.

to obtain 1V rms [42]. Figure 4.12 shows a sinusoidal voltage with a frequency of
250Hz generated with eight pulse-driven Josephson arrays connected in series.
The peak–peak amplitude is 2.83V corresponding to 1V rms. The quality of the
waveform is demonstrated by the spectrum which shows that higher harmonics
are suppressed by at least −121 dBc.
The practical disadvantage of the aforementioned schemes is that each array

requires a separate current pulse source, which is synchronized to all other
current pulses sources. Therefore, broadband microwave splitters, the so-called
Wilkinson dividers, have been introduced [45, 46]. With this technology, 51 200
Josephson junctions could be driven by a single current pulse source to generate
1V rms [46]. Moreover, 2 V rms could be achieved with four synchronized
current pulse sources, which drove two 1V chips with overall eight Josephson
arrays [45].
Optoelectronic schemes are an alternative to drive several Josephson arrays

with a single source of electric current pulses [38]. In this approach, electric
current pulses are converted into optical pulses with optoelectronic tech-
niques (electrically driven optical modulators, lasers). The optical pulse train
is duplicated with optical power splitters. The power splitting yields several
synchronized optical pulse trains, which are then converted into synchronized
electric current pulse trains with suitable photodetectors.
The accuracy of the voltage quantization achievablewith a pulse-driven Joseph-

son array has been tested by comparing its output to that of a programmable
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Josephson voltage standard. At a frequency of 500Hz and an rms value of 104mV,
the fundamental frequency components of the two systems were found to agree
within an uncertainty of three parts in 107 [47]. Sine waves generated with two
pulse-driven Josephson arrays were found to agree within an uncertainty of three
parts in 108 at a voltage level of approximately 10mV [41]. Recently, the compar-
ison of a 1V pulse-driven Josephson standard and a programmable Josephson
standard yielded agreement at a level of one part in 108 [48]. Thus, pulse-driven
Josephson voltage standards provide arbitrary waveforms with high precision.
Concluding this section, we note that the technology of pulse-driven AC

Josephson voltage standards has considerably matured in recent years. Further
technological improvements can be expected. In fact, at the time of writ-
ing, pulse-driven AC Josephson voltage standards with 4V output and first
implementations of optoelectronic driving schemes had been presented at
conferences. Applications of pulse-driven Josephson standards in metrology
are reviewed in Section 4.1.5.3. At the time of writing, first steps were taken to
commercialize the technology and, therefore, many more applications can be
expected in the future.

4.1.5 Metrology with Josephson Voltage Standards

Josephson standards havemade tremendous impact on voltagemeasurements. In
the present International SystemofUnits, SIS or programmable binary Josephson
voltage standards are routinely used by national metrology institutes to realize
and disseminate the SI volt linked to the defining constants e and h. Details are
given in Section 4.1.5.1. Already in the previous SI, Josephson standards were
used to set up a conventional volt scale. In Section 4.1.5.2, the now abrogated
conventional volt is treated and the changes to voltage metrology are highlighted
that resulted from the implementation of the present SI in 2019. These changes
resemble those in resistance metrology, which are discussed in Section 5.4.2.
Programmable binary and pulse-driven Josephson standards are also used

to perform AC measurements. The measured AC electrical quantities include
voltages and impedance ratios among others. Moreover, pulse-driven AC
Josephson standards are employed in Johnson noise thermometry to realize and
disseminate the SI kelvin (see Section 8.1.5). AC measurements with Josephson
voltage standards are treated in Section 4.1.5.3. Finally, it is worth mentioning
that Josephson voltage standards are essential components of Watt balances
(also named Kibble balances) used to realize the SI kilogram, discussed in detail
in Chapter 7.

4.1.5.1 DC Voltage, the SI Volt
The Josephson effect allows quantized voltages to be realized, which depend only
on the defining constants e and h, an integer, and a frequency. The frequency
can be realized with extremely high precision with atomic clocks (with a relative
uncertainty smaller than 10−15 as discussed in Chapter 3). Moreover, the effect
itself is highly reproducible at the level of parts in 1016 [20] or even parts in 1019
[21], as alreadymentioned. In fact, an important argument in support of selecting
the Planck constant h as a defining constant was to harness the full potential of
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the Josephson effect (and the quantum Hall effect, see Chapter 5) for metrology;
see the more detailed discussion in Section 7.1.
Consequently, the Josephson effect is the prime choice for the realization of the

SI volt. The relative uncertainty of this SI volt realization can be inferred from
comparisons at practical voltage levels of 1 and 10V and is a few parts in 1010 or
better [49]. Note that the reproducibility tests mentioned earlier were performed
with only a few Josephson junctions and were not affected by the uncertainty of
the frequency. To fully harmonize voltage metrology worldwide, the Consulta-
tive Committee for Electricity andMagnetism (CCEM) of theMeter Convention
recommends the use of the following value of the Josephson constant, which has
been calculated to 15 significant digits from the defining constants e and h intro-
duced in Section 2.2 [50]

KJ = 483 597.848 416 984 GHz V−1 (4.21)

The choice of 15 significant digits allows one to quote accurate voltage values
even if the uncertainty of voltage comparisons can be further reduced by some
orders of magnitude below the present state of the art of approximately 10−10.
Either SIS or programmable binary Josephson voltage standards are used to

realize the SI volt and to calibrate secondary voltage standards, such as Zener
diodes. For calibration, the output voltage of a Josephson standard at liquid
helium temperature is compared to the output of the secondary standard at
room temperature. For this purpose, a compensation technique is used where
the difference of the two voltages is measured with a sensitive nanovoltmeter
that serves as a null detector. To fine-tune the Josephson voltage, the driving
frequency of the Josephson standard can be slightly adjusted.
For an absolute measurement, the frequency is referenced to an atomic clock

standard. Thermal voltages arise from the temperature difference between the
Josephson standard and the room temperature part of the measurement setup.
However, they can be compensated by reversing the polarity of the Josephson
voltage and the voltage of the secondary standard. Programmable binary
Josephson standards allow faster polarity reversal as SIS Josephson standards.
The faster polarity switching increases the amount of data that can be taken
per time interval and, thus, reduces the measurement uncertainty. Moreover,
programmable Josephson standards allow measurement procedures involving
several DC voltages to be automated. Of course, calibrations in the DC regime
are not affected by the ill-defined transients.
The impact of Josephson standards on voltagemetrology becomes fully obvious

when the realization of the volt in the previous SI is considered. Before the imple-
mentation of the present SI in 2019, the SI volt was realized using a so-called volt-
age balance [51] and a calculable capacitor [52]. The calculable capacitor yielded
an SI value of the capacitance traceable to the meter. Using this value, the voltage
balance compared the electrostatic force to the gravitational force, thereby real-
izing the SI volt with a relative uncertainty of a few parts in 107 [53]. Thus, the
realization of the SI volt with Josephson voltage standards in the present SI is a
substantial improvement over the previous realization of the SI volt, which did
not involve Josephson standards.
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4.1.5.2 The Conventional Volt in the Previous SI
Already in the 1980s, it was realized that voltage metrology could be significantly
harmonized using the highly reproducible Josephson effect. Since the prime
goal of metrology is to ensure worldwide uniformity of measurements, steps
were taken to base voltage measurements on the use of the Josephson effect,
highly precise frequency measurements, and a fixed, agreed-upon value of
the Josephson constant K J. In 1987, the General Conference of the Meter
Convention (Conférence Générale des Poids et Mesures, CGPM) instructed the
International Committee for Weights and Measures (Comité International des
Poids et Measures, CIPM) to recommend a value of the Josephson constant
K J, which should be used when analyzing Josephson measurements [54]. In
1988, the CIPM recommended a value that was determined using the best
experimental data available at that time and should be used from 1 January 1990
[55]. This conventional value or agreed-upon value was denoted by K J-90. K J-90
was introduced together with the conventional value of the von Klitzing constant
RK-90 (see Section 5.4.2) and was given by

KJ-90 = 483 597.9 GHz V−1 (4.22)

To ensure the compatibility of K J-90 and the then valid SI value of K J, K J-90 was
assigned a conventional relative uncertainty of four parts in 107.
In close analogy to the resistance case of Section 5.4.2, the relation

U90 =
nf
KJ-90

(4.23)

established a new, highly reproducible voltage scaleU90. In Eq. (4.23), K J-90 could
be treated as a constant with zero uncertainty since no comparison to SI quanti-
ties was made. Equation (4.23) provided a representation of the unit volt, namely,
the conventional volt or volt90, yet not a realization of the volt according to the
definition of the SI.The non-SI unit volt90 was disseminated and used in electrical
metrology from 1990 to the implementation of the present SI on 20 May 2019.
The superior reproducibility of the Josephson effect reduced the uncertainty of
voltage measurements based on K J-90 to a few parts in 1010 or better [49].
The conventional value of the Josephson constant K J-90 has been abrogated in

the present SI (as well as the conventional value of the vonKlitzing constantRK-90;
see Section 5.4.2) [56]. The disseminated electrical units are now fully coher-
ent with the SI. Since K J of Eq. (4.21) and K J-90 of Eq. (4.22) are slightly differ-
ent, voltage-related quantities underwent a small discontinuous change when the
present SI was implemented.The relative change was approximately 1.067× 10−7
[56]. Reference [56] instructed users of electrical metrology how to deal with this
change and ensured a seamless transition from the previous SI to the present one.

4.1.5.3 ACMeasurements with Josephson Voltage Standards
Programmable binary Josephson voltage standards were the first type of
Josephson standard used to measure AC electrical quantities. This was because
their high output voltage of 10V facilitated high-precision measurements
already before 2010. The application of pulse-driven Josephson standards was
limited to measurements at low voltages till their output could be increased to
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the 1V level around 2015.This field is rapidly evolving at present. In this section,
we give an overview of the most important AC measuring techniques with
Josephson voltage standards starting with programmable Josephson standards
and progressing to pulse-driven standards.
An important AC measurement is realized by the so-called AC quantum volt-

meter, which is intended to measure the waveform of an unknown periodic AC
voltage [57, 58]. To this end, a programmable Josephson standard is used to syn-
thesize an AC reference voltage, which is synchronized and phase locked to the
unknown voltage.The difference between the reference and the unknown voltage
is measured with a sampling voltmeter, which serves as a null detector. This con-
cept is similar to the DC voltage calibration described in Section 4.1.5.1, in which
also the difference between reference andmeasurand is nulled. AC quantum volt-
meters can be operated in the audio frequency range. Thanks to the sampling
technique, the output of the programmable Josephson array is only used as ref-
erence if the array has settled on a quantized voltage step. Data taken during the
switching are discarded.This temporal gating suppresses the adverse effect of the
transients.The achievable uncertainty depends on the frequency and complexity
of the unknown waveform. For a simple approximation of a sinusoidal voltage
(consisting of only four levels), an uncertainty of parts in 109 was demonstrated
at frequencies below 400Hz [22].
The AC quantum voltmeter has been demonstrated with 10V programmable

Josephson standards [59, 60]. This was an important step toward commercial-
ization, which has already been accomplished using 10V Josephson technology
[59, 61, 62]. Commercial AC quantum voltmeters achieve uncertainties of less
than one part in 106 for measurements of AC voltages up to 1 kHz [61]. Opera-
tion of 10V programmable Josephson standards in cryogen-free cryocoolers has
also been demonstrated [62, 63]. Cryocooler operation is an important feature
for the use of commercial AC quantum voltmeters for calibration and testing in
industry [62].
In Ref. [64], it has been suggested to combine an AC quantum voltmeter with

standard resistors to enable automated measurements of DC and AC resistances
and currents.The current measurements are based onmeasurements of the volt-
age drop over a known resistor. Resistance measurements can be accomplished
with potentiometric methods involving a known standard resistor.
The concept of the AC quantum voltmeter was also used to develop a

quantum-based standard of electric power [65]. Another approach toward a
quantum-based power standard involves the use of analog–digital converters
that are characterized using a programmable Josephson standard [66, 67].
Electric power standards reach uncertainties on the order of 10−6 limited by the
uncertainty of their voltage and current transformers.
Various approaches are reported in the literature to use programmable

Josephson standards for measurements of rms values, for example, for the
calibration of thermal converters. A comprehensive summary can be found, for
example, in Ref. [22]. Measurements of rms values are affected by the transients,
which, so far, has limited the achievable uncertainty to parts in 107 even under
the most favorable measuring conditions [68].
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Programmable Josephson voltage standards have also been used for the mea-
surement of impedance ratios with impedance bridges. The idea of the bridge
measurement is to adjust the ratio of two voltages such that the voltages drive
the same current through the two impedances whose ratio is to be determined.
A null detector monitors the balancing of the bridge. If the bridge is balanced,
the impedance ratio is given by the voltage ratio. In conventional bridges, the
voltage ratio is manually adjusted using inductive voltage dividers. As an alterna-
tive, the two voltages can be generated by two programmable Josephson voltage
standards [69]. Such a Josephson impedance bridge offers the advantage that the
balancing can be automated over a frequency range from some tens of hertz to
several kilohertz, which substantially facilitates the calibration of impedances.
The effect of the transients can be sufficiently suppressed in bridgemeasurements
of like impedances. To this end, a square wave is generated by the programmable
Josephson standards and phase-locked detection is used at the fundamental fre-
quency of this wave [70]. Thereby, the higher harmonics of the fast transients
do not affect the measurement. Impedance bridges with programmable Joseph-
son voltage standards reach approximately the same uncertainties as obtained
with manually operated conventional bridges if like impedances are compared.
For example, for the measurement of two 10 kΩ resistors, an uncertainty of a
few parts in 108 was demonstrated [69]. The ratio of two 100 pF capacitors was
determinedwith uncertainties in the range of 10−8–10−7 depending on frequency
[22]. More recent work investigated the measurement of 100 to 10 pF capaci-
tance ratios [71]. Agreement was found between measurements with conven-
tional impedance bridges and bridgeswith programmable Josephson standards at
an uncertainty level of 10−7–10−6 depending on frequency [71]. The comparison
of unlike impedances, for example, capacitances andAC resistances, ismore chal-
lenging. This is because the balancing condition of impedance bridges depends
on frequency for unlike impedances. If the bridge is balanced at one frequency,
it is not at other frequencies. Therefore, programmable Josephson voltage stan-
dards with their fast transients and complex spectra do not lend themselves well
to bridge measurements of unlike impedances.
Applications of pulse-driven Josephson standards often exploit the possibility

to generate voltages with well-defined spectra, for example, a single tone corre-
sponding to a sinusoidal wave. This property is used in impedance bridges for
unlike impedances. Reference [72] reports a Josephson impedance bridge with
two pulse-driven Josephson standards, which can compare any two impedances
(resistance/capacitance, resistance/inductance, and inductance/capacitance).
The bridge can be operated from 1 to 20 kHz, and relative uncertainties well
below one part in 106 can be achieved [72]. An important measurement in
electrical metrology links capacitance to a quantum Hall resistance standard,
thereby realizing the SI farad (see Section 5.4.4). The measurement requires a
quadrature bridge, that is, an impedance bridge that compares capacitance to
AC resistance. Reference [73] reports a Josephson impedance bridge with two
pulse-driven Josephson standards, which compares a 10 nF capacitance standard
with a quantum Hall resistance standard with an uncertainty of 1.4 parts in 108.
Apart from impedance metrology, pulse-driven Josephson voltage standards

were used for the calibration of thermal converters with pure sinusoidal voltage at
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different frequencies [74]. Such measurements of rms values greatly benefit from
the absence of undefined voltage transients. Other measurements of electronic
components include nanovoltmeters and lock-in amplifiers [75]. The nonlinear-
ity of electronic components was investigated with multitone spectra generated
by a pulse-driven Josephson standard [76].More applications in electronic testing
are likely to develop as pulse-driven Josephson voltage standards become com-
mercially available. This development is supported by the possibility to operate
pulse-driven Josephson standards in cryogen-free cooling systems [45, 77].
Beyond electrical metrology, pulse-driven Josephson voltage standards are

used in Johnson noise thermometry to realize and disseminate the SI kelvin. The
Josephson standard is used to generate a calculable pseudonoise voltage wave-
form whose power is compared to the thermal noise power of a resistor [78].The
method can be implemented with voltage amplitudes below 1 μV [78]. Johnson
noise thermometry with pulse-driven Josephson voltage standards has substan-
tially contributed to the determination of the Boltzmann constant in the previous
SI and the redefinition of the kelvin [79–81]. Details can be found in Chapter 8.

4.2 Flux Quanta and SQUIDs

In Section 4.1, the flux quantum Φ0 = h/(2e)≈ 2× 10−15 V s was introduced and
shown to provide the basis of the realization of the SI unit volt. In this section, we
discuss that flux quanta also enable extremely sensitive measurements of mag-
netic quantities using SQUIDs. In SQUIDs, the physics of Josephson junctions
combines with the physics of flux quantization in a superconducting ring. Flux
quantization refers to the fact that the smallest amount of magnetic flux that can
bemaintained in a superconducting ring is given by the flux quantum.Moreover,
the magnetic flux threading a superconducting ring is always an integer multiple
of the flux quantum, very much like an isolated amount of charge is an integer
multiple of the elementary charge e. Flux quantization is indeed the rationale for
considering Φ0 = h/(2e) a quantum entity rather than a simple combination of
two fundamental constants.
The first SQUID was demonstrated in 1964 [82], only two years after Brian

D. Josephson had published his seminal paper about supercurrents in supercon-
ducting tunnel structures [1]. SQUID technology has substantially matured since
then. Nowadays, SQUIDs are commercially available and used in various applica-
tions from biomagnetism to nondestructive material testing and geophysics. For
a comprehensive, in-depth treatment of SQUID physics, technology, and appli-
cations, the interested reader is referred to specialized monographs and review
articles (e.g., [16, 83–85]). In Section 4.2, we focus on the basics of SQUIDs in the
context of quantum metrology and on selected applications in measurement.

4.2.1 Superconductors in External Magnetic Fields

A SQUID consists of a superconducting ring, which is interrupted by one or
two Josephson junctions and threaded by magnetic flux. Therefore, we intro-
duce the reader to the physics of superconducting structures in externalmagnetic
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fields before discussing SQUIDs in Section 4.2.2. To do so, we start with bulk
superconductors in Section 4.2.1.1 and then proceed to superconducting rings to
introduce the concept of flux quantization in Section 4.2.1.2. Finally, we discuss
single Josephson junctions in external magnetic fields in Section 4.2.1.3.

4.2.1.1 Meissner–Ochsenfeld Effect
The Meissner–Ochsenfeld effect refers to the observation that a magnetic field
does not penetrate deeply into a superconductor.The effect was first observed by
Walther Meissner and Robert Ochsenfeld at the Physikalisch–Technische Reich-
sanstalt, the predecessor of the PTB, in 1933 [86].
To describe a superconductor in a magnetic field and, in particular, the

Meissner–Ochsenfeld effect, we start from very general grounds, namely, from
the quantum mechanical electric current density, jS(r). The electric current
density is obtained by multiplying the probability current density and the charge
of the Cooper pair eS = −2e. The electric current density can then be written as

jS(r) =
eSℏ
2mSi

[
Ψ∗(r)gradΨ(r) − Ψ(r)gradΨ∗(r)

]
−

e2S
mS

A(r)Ψ∗(r)Ψ(r)

(4.24)

with

Ψ(r) =
√
nS(r)ei𝜃(r) (4.25)

being the macroscopic quantum mechanical wave function of the BCS theory
according to Eq. (4.2). The mass of the Cooper pair is denoted by mS. As usual,
A(r) is the vector potential of the magnetic flux density B(r), that is,

B(r) = rotA(r) (4.26)

holds. While the Josephson effect is determined by the temporal variation of the
phase difference𝜑, spatial variationswill turn out to be important for the descrip-
tion of superconductors in magnetic fields. Therefore, the spatial dependence of
all quantities is explicitly noted in the above equations. Inserting Eq. (4.25) in
Eq. (4.24) yields

jS(r) =
nSe2S
mS

[
ℏ

eS
grad 𝜃 (r) − A(r)

]
(4.27)

Taking the curl of either side and keeping in mind that the curl of any gradient
field vanishes, we obtain

rot jS(r) = − 1
𝜇0𝜆

2B(r) (4.28)

with

𝜆
2 =

mS

𝜇0nSe2S
(4.29)

𝜇0 is the magnetic constant also known as the permeability of vacuum.
Equation (4.28) shows that the Cooper pair current density and the magnetic
field are related.
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The Meissner–Ochsenfeld effect is derived if Eq. (4.28) is combined with
Maxwell’s equations, namely,

jS(r) =
1
𝜇0

rot B(r) (4.30)

(neglecting the displacement current), and

div B(r) = 0 (4.31)

Inserting Eq. (4.30) in Eq. (4.28) and using the identity for the Laplace operator
Δ = grad(div)− rot(rot) and Eq. (4.31), we obtain the following equation:

ΔB(r) − 1
𝜆2

B(r) = 0 (4.32)

To extract the physics, that is, theMeissner–Ochsenfeld effect, from Eq. (4.32),
we assume that the magnetic field is oriented along the z-axis of a rectangular
coordinate system and depends only on the x-coordinate. It is further assumed
that the superconductor extends from x = 0 to +∞ (and that vacuum extends
from −∞ to x = 0). Then, the magnetic field in the superconductor is given by

Bz(x) = Bz(x = 0) exp
(
− x
𝜆

)
(4.33)

Thus, themagnetic field decays exponentially and is negligibly small in the inte-
rior of a bulk superconductor, where it can be considered zero. This damping of
the magnetic field is known as the Meissner–Ochsenfeld effect. The magnetic
field is finite only in a narrow edge region whose width is approximately 𝜆. The
length 𝜆 is called the London penetration depth named after Fritz and Heinz
London who described a superconductor in a magnetic field as early as 1935 [2].
The London penetration depth is typically in the range from 10 to 100 nm for
type I superconductors and increases with increasing temperature and diverges
as the critical temperature Tc is reached (the specific difference between type I
and II superconductors will not be considered here). An equivalent formulation
of the Meissner–Ochsenfeld effect is to state that a superconductor expels the
magnetic field from its interior and behaves like a perfect diamagnet.The perfect
diamagnetism is also the characteristic of the superconducting state, along with
the disappearance of electric resistance.
The Meissner–Ochsenfeld effect is due to a screening current flowing at the

surface of the superconductor as can be seen from the Maxwell equation (4.30).
Taking the curl of Bz(x) yields a screening current in the y-direction, that is, per-
pendicular to the magnetic field and parallel to the interface between the super-
conductor and the vacuum:

jSy(x) =
1
𝜇0𝜆

Bz(x = 0) exp (− x∕𝜆) (4.34)

Thus, the magnetic field gives rise to a screening current in the edge region,
which, in turn, results in a field-free interior of the superconductor.
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4.2.1.2 Flux Quantization in Superconducting Rings
We consider a superconducting ring in the x–y plane and a magnetic field
along the z-axis, which can be expressed by a vector potential A(r) according to
Eq. (4.26). To study themagnetic fluxΦF through the area F , which is enclosed by
the ring, we use Eq. (4.27). Rewriting it in terms of the flux quantumΦ0 = h/(2e)
and the London penetration depth 𝜆 gives

𝜇0𝜆
2jS(r) = −

Φ0

2π
grad 𝜃(r) − A(r) (4.35)

Equation (4.35) can be integrated along a closed pathC in the superconducting
ring. When calculating the integral over A(r), we can take advantage of Stokes’
theorem and write

∮C
A(r) ⋅ ds =

∫F(C)
rotA(r) ⋅ df =

∫F(C)
B(r) ⋅ df = ΦF (4.36)

Thus, the termwith the vector potential yields themagnetic fluxΦF through the
ring area F . When working out the term that contains the phase 𝜃(r), one must
keep in mind that the macroscopic wave function Ψ(r) must be defined without
any ambiguity. This requires that the relation

∮C
grad𝜃(r) ⋅ ds = −2πn (4.37)

holds with n being an integer.Then the phases 𝜃(r) before and after traversing the
closed path C differ only by 2πn, which is meaningless due to the 2π periodicity
of the phase. Collecting the results of Eqs. (4.36) and (4.37), we obtain

∮C
𝜇0𝜆

2jS(r) ⋅ ds + ΦF = nΦ0 (4.38)

Let us assume that the ring is a bulk superconductor, that is, its width and thick-
ness are much larger than the London penetration depth 𝜆. The integration path
C can then be chosen to be several 𝜆 away from the surface of the ring. In this
case, the screening current density jS(r) is negligible along the integration path,
and Eq. (4.38) simplifies to

ΦF = nΦ0 (4.39)

Equation (4.39) states that the magnetic flux through the area enclosed by a
superconducting ring is quantized in units of the flux quantum (if the ring has a
sufficiently largewidth and thickness). It is worth emphasizing that this result was
derived for an uninterrupted superconducting ringwithout a Josephson junction.
If a Josephson junction is embedded in the ring, Eq. (4.39) does not apply any-
more. This case is studied in Section 4.2.2.
For an uninterrupted superconducting ring, the question arises how ΦF can

be quantized even though the external magnetic field B(r) and the external flux
Φext can vary continuously. The flux quantization is the result of the screening
current that circulates close to the surface of the ring and gives rise to its field-free
interior. The screening current generates a fluxΦS whose magnitude is such that
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an integer multiple of flux quanta is obtained if ΦS is added to the external flux.
Thus, the relation

ΦF = Φext + ΦS = nΦ0 (4.40)

holds.The circulating Cooper pair current and themagnetic flux that it generates
will be reconsidered when treating SQUIDs in Section 4.2.2.

4.2.1.3 Josephson Junctions in External Magnetic Fields and Quantum
Interference
In this section, we consider a single Josephson junction in an external magnetic
field to set the stage for the description of SQUIDs. To this end, it will be discussed
how an externalmagnetic fieldmodifies the phase difference𝜑 across a Josephson
junction and how this field dependence gives rise to quantum interference.
The quantity of interest is the supercurrent IS across the Josephson junction

according to Eq. (4.5). However, in contrast to Section 4.1, we consider spatially
dependent phases 𝜃1 and 𝜃2 of the wave functions of the two superconductors
that form the Josephson junction.The spatially dependent phases 𝜃1(r) and 𝜃2(r)
can be obtained fromEq. (4.35) if the vector potentialA(r) and the current density
jS(r) are known. Let us consider a Josephson junction where the tunnel barrier is
located around x = 0 as shown in Figure 4.13. Superconductor 1 extends from
x = −∞ to the tunnel barrier and superconductor 2 from the tunnel barrier to
x = +∞. The superconductors shall be made of the same material and extend
from –a/2 to +a/2 in the y-direction.Themagnetic flux density points along the
z-axis and shall be constant in the tunnel barrier.
In the superconductors, the magnetic flux density decays exponentially due to

the Meissner–Ochsenfeld effect as described by Eq. (4.33). Separately for each
superconductor, the vector potential and the current density can be calculated
from the magnetic flux density using Eqs. (4.26) and (4.30), respectively. Both
quantities have only a y component and the vector Eq. (4.35) simplifies to

d𝜃(y)
dy

= − 2π
Φ0

(𝜇0𝜆2jsy(x) + Ay(x)) (4.41)

As x approaches±∞, the vector potential becomes constant (corresponding to
the vanishing magnetic flux density), and the current density is found to decay to
zero (see Eq. (4.34)). Since Eq. (4.41) is valid at any point x, it can be readily inte-
grated at x=±∞where the current density is zero. Doing so for superconductors
1 and 2, one obtains for the phase difference across the Josephson junction

𝜑(y) = 𝜃1(y) − 𝜃2(y) = 𝜑0 +
2π
Φ0

[Ay(+∞) − Ay(−∞)] ⋅ y (4.42)
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θ1 (r) θ2 (r)

Figure 4.13 Josephson junction in a magnetic
field that points along the z-direction. The
tunnel barrier around x = 0 is shown in gray. The
phase of the wave function to the left and right
of the barrier is 𝜃1(r) and 𝜃2(r), respectively.
Source: Göbel and Siegner [10]. Reproduced
with permission of John Wiley & Sons.



4.2 Flux Quanta and SQUIDs 67

with 𝜑0 being the phase difference at y = 0. The term with the vector potential
can be rewritten, and we obtain

𝜑(y) = 𝜑0 +
2π
Φ0∮C

A(r)ds = 𝜑0 +
2π
Φ0

Φ(y) (4.43)

The integral is taken along a closed loop in the x–y plane (normal to the mag-
netic field).The loop has a width y and a length in the x-direction that mathemat-
ically extends from −∞ to +∞ yet can be restricted to several times the London
penetration depth𝜆 fromaphysical point of view.Themagnetic fluxΦ(y) through
this area depends on the y coordinate. AsΦ(y) changes by a flux quantumΦ0, the
phase difference 𝜑 changes by 2π. Consequently, the supercurrent density

jS(y) = jSmax sin(𝜑(y)) (4.44)

is a periodic function with periodΦ0 and changes its direction depending on the
position y within the Josephson junction.
The supercurrent IS across the Josephson junction is obtained by integration of

the supercurrent density jS(y) over the area of the tunnel barrier using Eqs. (4.42)
and (4.44). The integrations yields

IS = ISmax sin𝜑0

sin
(
πΦA

Φ0

)
πΦA

Φ0

(4.45)

with the magnetic flux ΦA = Φ(y = a). Thus, ΦA is the magnetic flux through
the Josephson junction. Applying a bias current, the 𝜑0 term can be adjusted, but
|sin𝜑0|≤ 1 always holds. Therefore, the maximum current or critical current in
a magnetic field is given by

ISmax(ΦA) = ISmax

|||||||
sin

(
πΦA

Φ0

)
πΦA

Φ0

||||||| (4.46)

The critical current under the magnetic field is shown in Figure 4.14.Themod-
ulation induced by the magnetic flux resembles the optical diffraction pattern
observed behind a slit illuminated by coherent light. This observation corrobo-
rates that interference between differently phased current contributions is at the
heart of the modulation of the critical current.
The results of Section 4.2.1.3 are summarized as follows:

• Magnetic flux changes the phase difference across a Josephson junction.
• Thenatural unit of themagnetic flux is the flux quantumΦ0 since a flux change

of Φ0 gives rise to a phase change of 2π.
• Quantum interference takes place when current contributions with different

phases are superimposed.

4.2.2 Basics of SQUIDs

In principle, measurements of magnetic fields could be realized using the mag-
netic flux dependence of the critical current of a single Josephson junction as
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Figure 4.14 Critical current
of a Josephson junction in a
magnetic field (normalized to
the zero-field critical current)
versus magnetic flux in units
of the flux quantum. Source:
Göbel and Siegner [10].
Reproduced with permission
of John Wiley & Sons.
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Figure 4.15 Schematic drawing of a DC SQUID
with two Josephson junctions 1 and 2. The SQUID
loop is penetrated by a magnetic field normal to
the superconducting loop. Voltages are measured
between contacts u1 and u2. Source: Göbel and
Siegner [10]. Reproduced with permission of John
Wiley & Sons.

shown in Figure 4.14. Yet, in this approach, the area over which the field is inte-
grated is small, which limits the field resolution for a given flux resolution. A
SQUID consists of a superconducting loop and thus has an increased area for
field integration. The loop is interrupted by one or two Josephson junctions. To
introduce the basics of SQUID physics in the context of quantum metrology, we
restrict the discussion to the so-called DC SQUIDs. In DC SQUIDs, the loop is
interrupted by two junctions, as shown in Figure 4.15.
Let us consider a symmetric DC SQUID with two identical ideal Josephson

junctions.We assume that the area of each junction ismuch smaller than the area
F of the superconducting loop, so that the magnetic flux through each junction
is negligible. The DC SQUID is penetrated by an external magnetic field B nor-
mal to the plane of the SQUID loop giving rise to an external magnetic flux Φext
through the loop. The SQUID is biased with a DC current Ibias, which splits into
two currents IS1 and IS2 through the Josephson junctions 1 and 2, respectively.
For these currents, the Josephson equation (4.5) holds:

IS1,2 = ISmax sin(𝜑1,2) (4.47)

The phase differences across the junctions 1 and 2 are denoted by 𝜑1 and 𝜑2,
respectively. Following the line of thought of Section 4.2.1.2, wemust also account
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for a circulating current, termed J in Figure 4.15. The circulating current con-
tributes to the currents IS1 and IS2 according to the following relations:

IS1 =
Ibias
2

+ J , IS2 =
Ibias
2

− J (4.48)

The SQUID behavior is determined by the relation between the phase differ-
ences 𝜑1 and 𝜑2 and the magnetic flux through the SQUID loop. This relation
can be derived from the integration of Eq. (4.35) using the condition that the
wave function is defined without any ambiguity as expressed by Eq. (4.37). Anal-
ogous to the treatment of the superconducting ring in Section 4.2.1.2, it can then
be shown that

2π
Φ0

[
∮C
𝜇0𝜆

2jS(r) ⋅ ds + ΦF

]
= 2πn + (𝜑1 − 𝜑2) (4.49)

In this equation, the presence of the Josephson junctions manifests itself by the
term (𝜑1 −𝜑2). Apart from this term, the equation is identical to Eq. (4.38) of
an uninterrupted superconducting ring. If the SQUID loop can be considered a
bulk superconductor, the integral term can be neglected based on the argument
developed in Section 4.2.1.2. The total flux is then given byΦF. The fluxΦF is the
sum of the external flux Φext and the flux generated by the circulating current J
flowing at the surface of the SQUID loop:

ΦF = Φext + LJ (4.50)

where L is the inductance of the SQUID loop. As for a single Josephson junction
in a magnetic field, Eq. (4.49) shows that the magnetic flux changes the phase
term and should be quantified in terms of the natural unit Φ0.
Next, we discuss how quantum interference in the SQUID loop provides the

basis for extremely sensitive measurements of magnetic quantities. According to
Kirchhoff’s law, the bias current must be equal to the sum of IS1 and IS2. Together
with Eq. (4.49), in which the integral term is neglected, Kirchhoff’s law yields

Ibias = ISmax[sin(𝜑1) + sin(𝜑2)] = 2ISmax cos
(
𝜑1 − 𝜑2

2

)
sin

(
𝜑2 +

𝜑1 − 𝜑2

2

)
= 2ISmax cos

(
πΦF

Φ0

)
sin

(
𝜑2 +

πΦF

Φ0

)
(4.51)

In general, the analysis of Eq. (4.51) is complicated since the flux ΦF depends
on the external flux and the circulating current, which also affects the phase dif-
ference across the Josephson junctions. Yet, regarding highly sensitive SQUID
measurements, we can treat the simple case of very small SQUID inductance L.
To make a more quantitative argument, the screening parameter

𝛽L =
ISmaxL
Φ0∕2

(4.52)

is defined as the maximum flux that a supercurrent in the SQUID loop can gen-
erate normalized by half a flux quantum. The case of small inductance L is then
given by the condition 𝛽L ≪ 1. For 𝛽L ≪ 1, we obtain ΦF = Φext, and the cur-
rent Ibias of Eq. (4.51) is modulated by the external flux Φext only. This behavior
provides the basis of measurements of the external flux or the external magnetic
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field. We also note that the flux through the SQUID loop is not quantized in this
case. The maximum current is obtained if the sine term of Eq. (4.51) is adjusted
to the value ±1 by an appropriate choice of 𝜑2. Then the maximum current, that
is, the critical current, is found to be

ISmax(Φext) = 2ISmax

|||||cos
(
πΦext

Φ0

)||||| (4.53)

As shown in Figure 4.16, the critical current is a periodic function of the
external magnetic flux with the periodicity given by the flux quantum Φ0.
Maxima occur whenever Φext = nΦ0, while the critical current is zero for
Φext = (n+ 1/2)Φ0. The modulation depth ΔISmax is given by 2ISmax. The pattern
of Figure 4.16 resembles the optical interference pattern observed behind a
double slit, which is illuminated by coherent light. In the SQUID case, quantum
interference occurs between the left-hand and the right-hand paths in the
SQUID loop. The outcome of the quantum interference, that is, whether it
is constructive or destructive, depends on the phases 𝜑1 and 𝜑2 across the
Josephson junctions 1 and 2, respectively. Phase differences result from the mag-
netic flux as shown by Eq. (4.49). To take the analogy to optics one step further,
we note that when plotting versus magnetic field, the pattern of Figure 4.16 has
an envelope given by the pattern of a single junction. Similarly, in optics, the
double-slit pattern has an envelope given by the single-slit diffraction profile.
When discussing DC SQUIDs, we have neglected this single-junction effect
since the area of a single junction is much smaller than that of the SQUID loop.
Consequently, the magnetic field period of the single-junction pattern is much
larger than that of the SQUID pattern.
For completeness, we also briefly discuss the case of large SQUID inductance L,

corresponding to 𝛽L≫ 1. In this case, even a small circulating current J adds a
nonnegligible flux to the external flux. Let us assume that the external flux is
increased from zero. This flux change induces a circulating screening current J
such that the associated flux LJ compensates for the increase in the external flux
and the total flux remains zero. As the external flux exceeds Φ0/2, it is energeti-
cally more favorable to change the direction of the screening current J such that
its magnetic flux adds up to the external one to adjust the total flux to one flux
quantum Φ0. With further increase in the external flux, this behavior repeats.
More flux quanta are added so that the total magnetic flux is always given by an
integer multiple of Φ0. Obviously, this case is not favorable for measurements of

ISmax (Φext)

ISmax

Φext/Φ0

2

0
−2 −1 0 1 2

Figure 4.16 Critical current
of a DC SQUID (normalized
to the zero-field critical
current of a single Josephson
junction) versus external
magnetic flux in units of the
flux quantum for negligible
SQUID inductance. Source:
Göbel and Siegner [10].
Reproduced with permission
of John Wiley & Sons.
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the external magnetic flux. In fact, for large 𝛽L, the modulation depth ΔISmax can
be approximated by ΔISmax = Φ0/L = 2ISmax/𝛽L, which is much smaller than the
modulation depth ΔISmax = 2ISmax obtained for 𝛽L≪ 1. The limit 𝛽L≫ 1 is also
characterized by the inequality

LJ ≤ Φ0∕2≪ LISmax (4.54)

Thus, J≪ ISmax holds so that the circulating screening current has only a neg-
ligible effect on the phases 𝜑1 and 𝜑2, which are almost equal in this case. There-
fore, the term (𝜑1 −𝜑2) is small in Eq. (4.49), and aspects of the physics of a
superconducting ring without Josephson junctions are recovered. In particular,
the total flux is found to be given by an integer number of flux quanta.

4.2.3 Applications of SQUIDs in Measurement

The most sensitive magnetic measuring instruments available today are DC
SQUIDs made of low-temperature superconductors, such as niobium. Com-
mercial instruments have a noise floor of (1–10)𝜇Φ0/

√
Hz and (1–10) fT/

√
Hz

for measurements of the magnetic flux and the flux density, respectively. These
numbers correspond to an energy resolution of (10−31–10−32) J/Hz. The energy
resolution is not far off the fundamental Heisenberg limit and corresponds
to the energy required to lift an electron by 1mm to 1 cm in the gravitational
field of the earth. In this section, we briefly discuss real DC SQUIDs and the
scheme for their readout, which will picture the SQUID as a highly sensitive
flux-to-voltage converter. Then we discuss how DC SQUIDs are implemented
in magnetometers and how their high resolution is harnessed for the precise
scaling of currents and resistances and for biomagnetic measurements.

4.2.3.1 Real DC SQUIDs
In a real DC SQUID, the Josephson junctions of Figure 4.15 are real junctions
as introduced in Section 4.1.3. The SQUID can then be described by the RCSJ
model. Nonhysteretic overdamped junctions with McCumber parameter 𝛽C ≤ 1
are used in real DC SQUIDs.The critical current of real SQUIDs is maximum for
external magnetic fluxes Φext = nΦ0 and minimum for Φext = (n+ 1/2)Φ0. Thus,
their flux dependence is similar to that derived for ideal SQUIDs in Section 4.2.2.
The SQUIDs are biased with a DC current Ibias, and the time-averaged voltage
drop over the SQUID ⟨U⟩ is measured between the contacts u1 and u2 as shown
in Figure 4.15.
In principle, flux measurements with DC SQUIDs can be realized by increas-

ing the bias current from zero till a finite voltage ⟨U⟩ is observed. The voltage
drop indicates that the bias current equals and starts to exceed the critical cur-
rent at the applied flux. If this measurement is repeated for different fluxes, the
flux dependence of the critical current is obtained, which is a sensitive gauge of
the flux. However, this is a cumbersome procedure. Therefore, in practice, the
SQUID is biased with a current slightly above the maximum critical current (i.e.,
the critical current forΦext = nΦ0).Then, the voltage drop ⟨U⟩ is measured as the
external magnetic flux is varied. Figure 4.17 schematically shows the voltage drop⟨U⟩ versus the bias current Ibias for the two limiting flux conditions Φext = nΦ0
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Φext = nΦ0

Ibias, op

Ibias

Figure 4.17 Schematic graph of time-averaged
voltage versus bias current of a real DC SQUID
for the two limiting magnetic flux conditions
Φext = nΦ0 andΦext = (n+ 1/2)Φ0. The
operating bias current Ibias, op is indicated by the
vertical line. Source: Göbel and Siegner [10].
Reproduced with permission of John Wiley &
Sons.
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Lfb

Figure 4.18 Simplified circuit diagram of a
DC SQUID operated in a flux-locked loop.
The output voltage Uout is proportional to
the change of the external flux through the
SQUID loop. Source: Göbel and Siegner [10].
Reproduced with permission of John Wiley &
Sons.

and Φext = (n+ 1/2)Φ0. The operating bias current is Ibias, op. As illustrated in
Figure 4.17, the voltage drop ⟨U⟩ changes as Φext is varied for a constant oper-
ating current Ibias, op. The voltage drop ⟨U⟩ is a periodic function of Φext with
periodicity Φ0 as is the critical current. However, maxima of ⟨U⟩ correspond to
minima of the critical current, and vice versa. Thus, voltage maxima occur for
Φext = (n+ 1/2)Φ0, while voltage minima are observed for Φext = nΦ0.
A SQUID operated in this mode can be considered a flux-to-voltage converter

with a resolution of a fraction of the magnetic flux quantum Φ0. Yet, the voltage⟨U⟩ does not provide an unequivocal measure of the flux due to the intrinsic
periodicity of the SQUID signal. This problem can be solved by operating the
SQUID in a so-called flux-locked loop. A flux-locked loop feeds additional flux
in the SQUID loop to keep the flux in the SQUID at a constant value while the
external flux varies.
This negative feedback scheme is schematically shown in Figure 4.18.The volt-

age ⟨U⟩ is amplified and integrated. The resulting signal generates an opposing
flux in the SQUID loop with the help of an inductance Lfb and produces the out-
put voltageUout over the resistor Rfb.This scheme linearizes the SQUID response
since Uout is proportional to the change of the external flux even if this change
is much larger than a flux quantum. To increase the sensitivity, flux modulation
schemes and lock-in detection are applied (not shown in Figure 4.18).With these
improvements,DCSQUIDs reach the outstandingmagnetic flux resolutionmen-
tioned at the beginning of Section 4.2.3.
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4.2.3.2 SQUIDMagnetometers and Magnetic Property Measurement Systems
Magnetometers measure the magnetic flux density or the magnetic field. When
a SQUID is used for these measurements, its effective area must be considered.
For a given flux resolution, the field resolution can be improved if the area is
increased. An increase of the area results in an increased SQUID inductance L,
which reduces the modulation depth as discussed in Section 4.2.2. To maintain a
sufficiently large modulation depth at a high field resolution, the concept of flux
transformation is used. A flux transformer consists of a closed superconduct-
ing loop with primary inductance Lp and secondary inductance Ls as shown in
Figure 4.19.
As the external flux changes by ΔΦext, a current I is induced in the flux trans-

former. Flux quantization requires that the flux generated by this current com-
pensates ΔΦext so that the flux through the transformer loop is nΦ0 before and
after the change of the external flux. Thus, ΔΦext determines the current accord-
ing to

ΔΦext + (Lp + Ls)I = 0 (4.55)

In turn, the current gives rise to a flux change ΔΦSQUID in the SQUID via the
mutual inductanceM:

ΔΦSQUID = −MI = M
Lp + Ls

ΔΦext (4.56)

The flux change ΔΦext increases linearly with the area of the flux transformer
for a givenmagnetic field. As seen fromEq. (4.56), this results in an increase of the
flux change ΔΦSQUID in the SQUID (we note without proof that the inductance
term decreases sublinearly with the area). Thus, the magnetic field sensitivity of
a SQUID magnetometer can be increased by choosing a larger flux transformer
area. The SQUID inductance is not increased, thereby avoiding detrimental
effects on the SQUIDmodulation depth. Using flux transformation,magnetome-
ters with a noise floor in the fT/

√
Hz range can be realized as mentioned earlier.

SQUIDmagnetometers allow measurements of the magnetic flux density with
outstanding resolution. However, they are not quantum standards since the effec-
tive SQUID area is not quantized. In Section 4.3, a quantum-based realization
of the SI unit of the magnetic flux density, tesla, is discussed. This realization
uses NMR techniques, which allow a primary standard of the tesla to be real-
ized. SQUID magnetometers can be calibrated against such primary standards
to obtain traceability to the SI.
We conclude this section on the use of SQUIDs for magnetic measurements by

a brief discussion of SQUID gradiometers and SQUID-based instruments that
measure the magnetic moment of materials. A first-order SQUID gradiometer

Figure 4.19 Superconducting flux transformer
with primary inductance Lp and secondary
inductance Ls. The magnetic flux through the
transformer is coupled to the SQUID via the
mutual inductanceM. Source: Göbel and Siegner
[10]. Reproduced with permission of John Wiley &
Sons. M
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Figure 4.20 First-order SQUID gradiometer.
Source: Göbel and Siegner [10]. Reproduced
with permission of John Wiley & Sons.

is a special flux transformer, in which the single superconducting sensor loop or
coil, shown in Figure 4.19, is replaced by two sensor coils.The arrangement of the
coils is shown in Figure 4.20. The coils have opposite winding directions so that
the signals from the two coils cancel each other if the magnetic field has the same
value in both coils. Therefore, first-order gradiometers are only sensitive to the
gradient of the magnetic field along the z-direction. This is of particular impor-
tance for highly sensitive measurements, for which the effects of background
fields must be suppressed. The concept works well if the background fields are
constant over the separation of the coils. This is often the case, for example, for
the magnetic field of the earth. If four coils are used in a so-called second-order
gradiometer, the signal from the field gradients is also suppressed. The instru-
ment is then only sensitive to the second derivative of the magnetic field in the
z-direction.
Second-order SQUID gradiometers are employed for the measurement of

small magnetic moments. The magnetic sample under study is moved through
the coil arrangement at a constant velocity. Due to the excellent background field
suppression in the second-order gradiometer, the SQUID signal solely results
from the magnetic field of the sample. The SQUID signal is recorded versus the
sample position. To determine the magnetic moment, the measured curve is
compared to a calibration curve obtained with a reference sample with known
magnetic moment. Magnetic moments as low as 10−11 A m2 can be detected
with SQUID-based magnetic property measurement systems.

4.2.3.3 Cryogenic Current Comparators: Current and Resistance Ratios
The outstanding magnetic flux sensitivity of SQUIDs is also used in the so-called
cryogenic current comparators (CCCs) [87]. These comparators allow current
and resistance ratios to be determinedwith relative uncertainties of 10−9 and bet-
ter. Precise current ratios are a cornerstone of current metrology. For example,
CCCs are used to determine current ratios in a special amperemeter designed for
the measurement of small currents, which is known as ultrastable low-noise cur-
rent amplifier (ULCA) [88].The ULCA allows the SI ampere to be realized linked
to the defining constant e and has substantially advanced current metrology (for
more details on ULCAs see Section 6.3.1).
The realization of well-known resistance ratios is of utmost importance in elec-

trical metrology since it allows the electric resistance scale to be established.The
anchor point of this scale is the realization of the SI ohm with the quantum Hall
effect. As discussed in Chapter 5, the quantum Hall effect can be used to link
electric resistance to the defining constants e and h with very low uncertainty.
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I

Iouter

Figure 4.21 Cross section of a superconducting tube (gray). A current I is passed through a
wire inside the tube. The current Iouter at the outer tube surface equals the current I. Source:
Göbel and Siegner [10]. Reproduced with permission of John Wiley & Sons.

However, it provides only a limited set of nondecade resistance values. For prac-
tical applications in electrical engineering, decade resistance values are required
from the milliohm to the teraohm range. Highly precise decade resistance values
are derived from the quantum Hall resistance using CCCs at national metrology
institutes.
In a CCC, current ratio measurements are based on Ampere’s law combined

with the Meissner–Ochsenfeld effect. The principle can be seen considering
a superconducting tube with a wall thickness that is much larger than the
London penetration depth 𝜆. Inside the tube, a wire along the tube axis carries a
current I, as shown in Figure 4.21. The current generates a magnetic flux density
B. To prevent the magnetic flux density from penetrating the superconductor,
a screening current I inner is induced at the inner surface of the tube. Applying
Ampere’s law to a closed integration contour inside the superconducting tube,
where the magnetic flux density is zero, we obtain

∮
B ⋅ ds = 𝜇0(I + Iinner) = 0 (4.57)

The screening current flows back at the outer surface of the superconducting
tube, Iouter = −I inner = I.
Next, we consider a superconducting tube with two wires carrying currents I1

and I2. Obviously, the outer-surface current Iouter = I1 + I2 will be zero if (and
only if ) I1 = −I2, that is, if currents of equal magnitude flow in the opposite
direction. This condition can be tested with a SQUID device set up to detect
the magnetic field generated by Iouter outside the superconducting tube. Thus,
the SQUID serves as a very sensitive null detector. It is important to note that the
outer-surface current does not depend on the specific position of the wires inside
the tube if the tube is long compared to its diameter. This is the basis of the CCC
concept and ensures its high precision.
The tube arrangement realizes the current ratio I2/I1 = 1. In a CCC, the tube

is replaced by a superconducting torus, whose ends overlap but are electrically
isolated from each other. Inside the torus, two coils with opposite winding direc-
tions carry currents I1 and I2. If the winding numbers are n1 and n2, any rational
current ratio

I2
I1

=
n1
n2

(4.58)

can be realized. The SQUID null detector is placed in the center of the torus. It
monitors the magnetic flux and generates a feedback signal, which adjusts one of
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Figure 4.22 Schematic circuit diagram of a
resistance bridge based on a cryogenic current
comparator. Source: Göbel and Siegner [10].
Reproduced with permission of John Wiley &
Sons.

the currents till Eq. (4.58) is fulfilled, that is, till the ampere turns of both coils are
equal.
As mentioned earlier, CCCs are widely used for precise resistance compar-

isons. A schematic circuit diagram of a CCC-based resistance bridge is shown
in Figure 4.22. An unknown resistor RX is compared to a resistance standard RN.
The two coils with winding numbers nX and nN have opposite winding directions.
The balance of ampere turns is monitored by a SQUID device, and the difference
between the voltage drops over the resistors is measured by a voltmeter. When
the bridge is completely balanced, the equations IXnX = INnN and IXRX = INRN
are fulfilled. Thus, the resistance ratio is given by

RX

RN
=

nX
nN

(4.59)

In practice, an auxiliary circuit (not shown in Figure 4.22) is needed to com-
pletely balance the bridge. A detailed discussion of auxiliary circuits can be found,
for example, in Refs. [89, 90]. The CCC-based resistance bridge is operated by
periodically reversing the current polarity at low frequencies (typically below
1Hz) to compensate for unwanted thermal electromotive forces. Relative uncer-
tainties of 10−9 and better are achieved.

4.2.3.4 Biomagnetic Measurements
SQUIDs not only contribute to the scaling of electrical units but have also found
“real-world” applications. Examples include geophysical surveying for oil and
gas as well as nondestructive material testing, where SQUIDs can be used,
for example, to detect subsurface flaws in aircraft parts. The most challenging
real-world application in terms of the required magnetic field resolution is
the measurement of biomagnetic signals. We briefly discuss biomagnetic
measurements in this section to illustrate how the unprecedented sensitivity of
a quantum-based SQUID device pushes the limits of measurements.
The most intensively investigated biomagnetic signals are those generated by

the human heart (magnetocardiography, MCG) [91] and human brain (magne-
toencephalography, MEG) [92]. Their investigation is of particular interest since
MCG and MEG are noninvasive diagnostic tools.
MCG is themagnetic counterpart of electrocardiography (ECG), in which elec-

tric signals are measured that originate from the heartbeat.Their temporal shape
provides information on the functioning of the heart. InMCG, the corresponding
magnetic field is measured. ECG signals are obtained with electrodes attached to
the thorax and, thus, originate from current contributions at the surface of the
body. In contrast, MCG signals are measured in a contactless mode and result
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from the total current distribution generated by the heart. Therefore, MCG con-
tains additional information not accessible with ECG.
In MEG, the magnetic field distribution is measured that is generated by the

electric activity of the brain. From the field distribution, information is obtained
on the location of the source (often modeled as current dipole) of the magnetic
field and, in turn, on the brain function.MEG combines high temporal resolution
on the order of a millisecond with localization accuracy in the centimeter range
and is noninvasive, asmentioned previously.This combinationmakes it an attrac-
tive diagnostic tool. For comparison, its electric counterpart, that is, noninvasive
electroencephalography, provides much less accuracy.
The challenge that MCG and MEG presents to measurement lies in the

weakness of the magnetic signals. Peak amplitudes of MCG signals are several
tens of picotesla, and MEG signals are even smaller with signal levels below
1 pT. The measurements must cover a bandwidth of several 100Hz to obtain the
desired information on the temporal shapes of the signals. Therefore, magnetic
field detectors with a noise level in the fT/

√
Hz range must be used to obtain a

sufficiently large signal-to-noise ratio. Consequently, SQUIDs are the magnetic
field sensors of choice for MCG and MEG.
Besides the sensitivity of the detectors, screening of external static as well as

alternating magnetic stray fields is required. These fields can be on the order of
microtesla andwould otherwise completelymask the biomagnetic signals.There-
fore, the measurements are performed in magnetically shielded rooms. To date,
themagnetically shielded roomwith the highest shielding factor has been built at
the Berlin institute of the PTB. It comprises seven magnetic layers of mu-metal
with varying thickness and one highly conductive eddy current layer consisting
of 10mm aluminum. In the inner measuring chamber, a noise level well below
1 fT/

√
Hz is achieved with a white characteristic up to 1MHz (apart from a 1/f

contribution at low frequencies).
The detection system for biomagnetic measurements consists of SQUID arrays

rather than a single SQUID detector. Up to several hundreds of SQUID sensors
are employed to measure the magnetic field distribution caused by the bioelec-
tric currents related to the activity of the heart or brain. The current distribution
is then reconstructed from the measured magnetic field distribution. This is a
so-called inverse problem, which is much more challenging than the so-called
forward calculations, in which the field is determined from a known source dis-
tribution. Figure 4.23 shows a photograph of amultichannel SQUID system oper-
ated in a magnetically shielded chamber in the Benjamin Franklin hospital of the
Charité university clinic in Berlin.

4.3 Traceable Magnetic Flux Density Measurements

The magnetic flux density can be resolved with outstanding resolution using
SQUID magnetometers as described in Section 4.2.3. However, these instru-
ments do not provide traceability to the SI. A conceptually straightforward
way to obtain traceability is to use a calculable magnetic field coil and to pass a
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Figure 4.23 Eighty-three-
channel SQUID system
aligned above a patient for
MCGmeasurements. Source:
Courtesy of PTB.

current through it, whose SI value is known. In practice, this concept faces severe
limitations since it is difficult to establish the geometry of a coil with the required
high precision.Therefore, NMR techniques are used at many national metrology
institutes to realize, maintain, and disseminate the SI unit of the magnetic
flux density, tesla. NMR techniques provide the basis of traceable magnetic
measurements in the present SI, and they already did so in the previous SI.
NMR measurements link the magnetic flux density to the magnetic moment

of a nucleon, that is, to a constant of nature. The nucleon is chosen such that the
SI value of its magnetic moment is precisely known. In the context of quantum
metrology, NMR involves the manipulation of nuclear spins to realize highly
precise measurements. To catch the essence of NMR measurements, consider a
proton with its spin components sz = ±1/2ℏ along the quantization axis z. If a
DC magnetic field Bz is applied along z, the two spin states are shifted upward
and downward in energy by

E± = ±
(
g e
2mp

sz
)
Bz (4.60)

The expression in parenthesis is the z component of the magnetic moment, g
the g-factor, andmp the protonmass. According to Eq. (4.60), the energy splitting
between the spin states can be expressed as

ΔE = ℏ𝜔 = ℏγ′pBz (4.61)
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where𝜔 is the (angular) spin-flip frequency. It is also named (angular) precession
frequency since in a classical picture the proton spin precesses around the mag-
netic fieldwith the angular frequency𝜔.The constant γ′p is the gyromagnetic ratio
of the proton given by twice the magnetic moment divided by ℏ. More strictly
speaking, the prime put as superscript is supposed to indicate that a proton in a
spherical sample of pure water is considered (at 25 ∘C). Thus, γ′p is the shielded
proton gyromagnetic ratio. Its approximate SI value is 2.675× 108 s−1 T−1 with a
relative uncertainty of 1.3× 10−8 according to the adjustment of the fundamental
constants of 2014 [93].The relative change of γ′p is negligible fromone adjustment
of the fundamental constants to the next. For example, it was less than four parts
in 108 from the adjustment of 2010 to that of 2014 [93, 94]. Therefore, Eq. (4.61)
allows the SI tesla to be realized based on the SI value of γ′p and a frequency mea-
surement, which can be performed with a low uncertainty.
Two different approaches are used to determine the frequency in NMR mea-

surements. For magnetic flux densities of a few millitesla and below, the water
sample is polarized by a magnetic field pulse, that is, the upper spin state is pop-
ulated. After the polarization pulse has been turned off, the free-precession decay
is observed in the time domain measuring the voltage, which is induced by the
precessing magnetic moment. The oscillating free-precession signal reveals the
precession frequency. The signal decays due to the intrinsic spin–spin relaxation
time and the inhomogeneity of the magnetic flux density across the water sam-
ple. Thus, the latter must be small for the technique to be applicable. Figure 4.24
shows a free-precession signal obtained at a magnetic field Bz of approximately
1.2mT. The plotted curve is the result of a downmixing process with a reference
frequency f ref = 51 090Hz. The downmixing generates a difference frequency
f diff, which can be determined from the experimental data. The precession fre-
quency 𝜔/(2π) is then obtained from 𝜔/(2π) = f ref + f diff.
To illustrate the application range of the free-precession technique for the real-

ization of the tesla at national metrology institutes, we take data from the PTB as
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Figure 4.24 Free-precession (FP) signal of protons in a water sample at a magnetic field of
approximately 1.2mT. The precession frequency 𝜔/(2π) has been downmixed with a reference
frequency of 51 090Hz to yield the observed oscillating signal. The gray dots are experimental
data and the black line is a fit to determine the difference frequency and, in turn, the
precession frequency. Source: Courtesy of C. Hahn, PTB.
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an example. At the PTB, the technique is used to realize the unit of the magnetic
flux density in the range from 10 μT to 2mT. The lower boundary is determined
by the requirement to precisely compensate the magnetic field of the earth. The
relative uncertainty varies from 10−4 (at 10 μT) to 10−6 (at 2mT) [95].
NMR absorption techniques can be used for magnetic flux densities in

the millitesla range and higher [95]. The absorption of a radiofrequency (RF)
magnetic field is monitored with the help of a resonator circuit to determine
the precession frequency 𝜔 and, hence, the unknown DC magnetic flux density
Bz [96]. Since the absorbed power scales with B2

z [96], the technique cannot be
extended to the low field range. At the PTB, the absorption technique is used to
realize the magnetic flux density from 1–2 to 150mT with a relative uncertainty
on the order of 10−5 [95].
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5

Quantum Hall Effect, the SI Ohm, and the SI Farad

The quantum Hall effect (QHE) occurs in two-dimensional electron systems
subjected to a strong magnetic field. The QHE was first observed by K. von
Klitzing et al. in 1980 when studying the magnetotransport properties of
silicon metal-oxide-semiconductor field-effect transistors (MOSFETs) at low
temperatures [1]. In 1985, K. von Klitzing was awarded a Noble Prize in physics
for his discovery. It was early on realized that the QHE could have a tremendous
impact on metrology since it provides quantized values of electric resistance.
These values only depend on an integer, the elementary charge e, and the
Planck constant h, which are defining constants of the present SI. Already in
the previous SI, the QHE provided the foundation of resistance and impedance
metrology, and it does so even more in the present SI. Its main application is
the DC quantum Hall resistance standard used by national metrology institutes
to realize and disseminate the SI ohm. In recent years, the QHE has also been
harnessed for AC resistance measurements, that is, for impedance metrology,
and the SI unit of capacitance, the farad, can be directly based on the QHE [2, 3].
From a physics point of view, the QHE relates to the fact that in a

two-dimensional electron gas in high magnetic fields, noninteracting elec-
trons lose all degrees of freedom of their motion. Their energy spectrum is
then discrete, similar to the energy spectrum of atoms. In this chapter, we focus
the discussion of the QHE on this aspect since it provides an understanding
of the basic physics, even though it does not provide a complete description of
the QHE. For a more detailed discussion, the reader is referred to, for example,
Refs. [4–6].
Metrological applications of the QHE have mostly been realized using

two-dimensional electron gases in GaAs/AlGaAs semiconductor structures.
Therefore, we mainly consider these semiconductor structures in Sections
5.1–5.4. First, we repeat some basics of semiconductor physics, which are neces-
sary to understand the basics of the QHE. We then introduce the GaAs/AlGaAs
semiconductor structures, in which the QHE is observed, in more detail. Next,
we discuss the QHE itself and elaborate on its impact on metrology, again
focusing on GaAs/AlGaAs semiconductor structures. In Section 5.5, a new
material, namely graphene, is introduced, and the QHE in graphene and its
potential for metrology are discussed.

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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5.1 Basic Physics of Three- and Two-Dimensional
Semiconductors

We consider crystalline three-dimensional bulk semiconductors of macroscopic
sizes on the scale of the de Broglie wavelength or crystalline two-dimensional
layered semiconductor structures. For the latter, it is assumed that the in-plane
dimensions of the layers are macroscopic on the scale of the de Broglie wave-
length. Thus, we assume that size quantization only occurs in the direction
normal to the layers. Except for this direction, the allowed values of the wave
vector k are determined by the semiconductor crystal’s size and, hence, are
quasi continuous due to the macroscopic crystal size. The eigenenergies of the
electrons (and holes) and their dispersion are represented by the band structure
E(k). The electrons and holes determine the transport and optical properties
of the semiconductor crystal. More precisely, these properties are governed
by the uppermost occupied band and the lowest unoccupied band, labeled
valence band and conduction band, respectively. These bands are separated
by the band gap with energy Eg. The dispersion of these bands close to their
extrema can often be approximated by the free-electron relation but with the
free-electron mass replaced by the effective massm*. The renormalization of the
mass accounts for the influence of the crystal lattice in this approximation. In
the following, we only consider “quasi free” electrons, which can be described by
the effectivemass approximation.Moreover, we assume that the band structure is
isotropic. We start with three-dimensional semiconductors and then move on to
two-dimensional ones. The effect of a magnetic field is discussed for both cases.

5.1.1 Three-Dimensional Semiconductors

The energy dispersion of quasi free electrons in a three-dimensional isotropic
semiconductor is given by

E(k) = ℏ
2|k|2
2m∗ = ℏ

2

2m∗ (k
2
x + k2y + k2z ) (5.1)

Equation (5.1) is simply the kinetic energy of a free particle with mass m*. If in
Hall measurements a magnetic field is applied along the z direction, B = Bz, the
electrons will move along cyclotron orbits in the x–y plane provided that scatter-
ing is not too strong. This condition can be expressed by the inequality 𝜔C𝜏 ≫ 1,
in which 𝜏 is the scattering time and

𝜔C = eB
m∗ (5.2)

the (angular) cyclotron frequency.Themagnetic field changes the energy disper-
sion. In a quantummechanical treatment, one obtains for amagnetic field aligned
along the z direction

E(kz) =
ℏ
2k2z

2m∗ +
(
lC + 1

2

)
ℏ𝜔C ± 1

2
g𝜇BB (5.3)

In this equation, lC is an integer (lC = 0, 1, 2, 3,…), g the g-factor of the electron,
and 𝜇B = eℏ/(2me) the Bohr magneton withme being the free-electronmass.The
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interpretation of Eq. (5.3) is straightforward.The first term represents the kinetic
energy of the “free”motion in the z direction.The second term is the energy corre-
sponding to the cyclotron motion in the x–y plane. Quantum mechanically, this
motion corresponds to a harmonic oscillator, where lC is the respective quan-
tum number. The different bands with quantum numbers lC = 0, 1, 2, 3, … are
called Landau levels after the Russian physicist Lev Landau.The third term is the
Zeeman energy of the electron, which has spin components sz = ±1/2ℏ oriented
parallel or antiparallel to the magnetic field B = Bz. Since the Zeeman energy,
g𝜇BB/2, is much smaller than the separation of the Landau levels, ℏ𝜔C, we shall
neglect it for the rest of this discussion.
An important quantity for understanding the QHE is the density of statesD(E).

It specifies the number of states available to electrons within an energy interval
from E to E+ dE (per volume in real space). Here, dE is an infinitesimal increase
in energy. For the occupation of these states, the Pauli principle must be consid-
ered. From Eq. (5.1), one obtains for quasi free electrons in a three-dimensional
semiconductor at zero magnetic field

D3D(E) = 1
2π2

(2m∗

ℏ2

)3∕2
E1∕2 (5.4)

The square-root energy dependence of D3D (E) is illustrated in Figure 5.1.
In a magnetic field, the density of states is given by [8]

D1D(E) =
ℏ𝜔C

(2π)2
(2m∗

ℏ2

)3∕2 ∑
lC

(
E −

(
lC + 1

2

)
ℏ𝜔C

)−1∕2
(5.5)
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Figure 5.1 Schematic illustration of the density of states of three-, two-, one-, and
zero-dimensional semiconductors. The one- and zero-dimensional systems are obtained by
applying a magnetic field to three- and two-dimensional semiconductors, respectively, and
show Landau levels. Only the two lowest subbands are sketched for the two- and
one-dimensional case. The discrete Landau levels of the zero-dimensional semiconductor are
labeled by the quantum numbers (lz , lC). Source: Göbel and Siegner 2015 [7]. Reproduced with
permission of John Wiley and Sons.
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As noted by the superscript, this is the density of states of a one-dimensional
semiconductor with its characteristic one-over-square-root energy dependence.
D1D (E) is also shown in Figure 5.1 together with D3D (E) and the densities of
states of zero- and two-dimensional semiconductors, which are discussed in
Section 5.1.2. According to Eq. (5.5), D1D (E) has a singularity at the bottom
of each Landau level. However, in real systems, this singularity is removed, for
example, due to level broadening that results from scattering. Notwithstanding
that this feature is not included in Eq. (5.5), the equation shows that D1D (E)
increases with increasing magnetic field due to the factor ℏ𝜔C.
Concluding this section, we emphasize that a magnetic field transforms a

three-dimensional semiconductor into a one-dimensional one. If the magnetic
field is applied in the z direction, the motion of quasi free electrons is quantized
with regard to the wave vector components kx and ky and free only with regard to
kz. The energy dispersion splits up into Landau levels. The number of electrons,
which can occupy a Landau level, increases with the increasing magnetic field
strength.

5.1.2 Two-Dimensional Semiconductors

Confinement of the motion of quasi free electrons in one or more dimensions
modifies their wave function, dispersion, and density of states. As discussed in
Section 5.1.1, confinement can be caused by a magnetic field. Confinement can
also be achieved geometrically by the generation of appropriate small structures.
The length scale for the occurrence of so-called size quantization (see below) is
given by the deBrogliewavelength of the electron.Confinement in one dimension
creates a two-dimensional semiconductor. Let us assume that the confinement
is due to a rectangular potential well in the z direction with an infinite barrier
height. In this simple case, the energy dispersion of the electrons is given by

E(kx, ky) = EQW(lz) +
ℏ
2

2m∗ (k
2
x + k2y ) (5.6)

with the quantization energy

EQW(lz) =
ℏ
2

2m∗

π2l2z
L2
z

(5.7)

where Lz is the width of this so-called quantum well and lz the quantum number
(lz = 1, 2, …, ∞). Thus, quantized energy levels are obtained resulting from the
confinement in the z direction.The quantization energy increases with the square
of the quantumnumber lz andwith the decreasing quantumwell width according
to 1/L2

z .
The confinement changes the density of states from a square-root to a staircase

function:

D2D(E) = m∗

πℏ2
∑
lz

Θ(E − EQW(lz)), (5.8)

whereΘ(E) is the Heaviside function (Θ(E< 0)= 0 andΘ(E≥ 0)= 1).The density
of states for the two-dimensional case is also shown in Figure 5.1.The figure illus-
trates thatD2D (E) is finite at the band edge whereD3D (E) is zero.This difference
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has important consequences formany device applications, in particular, for opto-
electronic devices [9]. Confinement of electrons by real potential wells with a
finite barrier height does not affect the principal features of size quantization
described earlier. Yet, it modifies some important aspects. For a finite barrier
height, the quantization energy for a given quantum state with quantum number
lz is lower and the number of bound quantum states is finite.
To move on to a semiconductor system that can show the QHE, we combine

the confinement by a potential well with the effect of a magnetic field, which is
discussed in Section 5.1.1. Again, it is assumed that the potential well confines
the electron motion in the z direction and that the field is applied along the z
axis, B= Bz. Thus, the field is applied normal to the semiconductor layers used to
form a quantum well as will be discussed in more detail in Section 5.2. Combin-
ing the previous results, it becomes immediately obvious that this arrangement
creates a zero-dimensional semiconductor system, in which the electron motion
is confined in all three dimensions. The energy of the electrons is then given by
the sum of the quantization energy EQW (lz) and the energy corresponding to the
cyclotron motion in the x–y plane. From Eqs (5.3) and (5.7), we obtain (again
neglecting the Zeeman term)

E(lz, lC) =
ℏ
2

2m∗

π2l2z
L2
z

+
(
lC + 1

2

)
ℏ𝜔C. (5.9)

The energy does not depend on the wave vector anymore; that is, there is no
dispersion, since the electrons cannot move freely.The energy spectrum consists
of a series of discrete energies characterized by the quantum numbers (lz, lC)
similar to the spectrum of an atom. Consequently, the density of states, D0D (E),
shows energy gaps between adjacent Landau levels as illustrated in Figure 5.1.The
quantization energy, EQW (lz), is usually larger than the cyclotron energy, which
is accounted for in Figure 5.1.Therefore, it is often sufficient to consider only the
Landau levels of the lowest quantum well state with lz = 1. Henceforth, we will
use this description.The number of states per Landau level (and per area), which
can be occupied by electrons, is given by

D0D = e
h
B (5.10)

Thus, the density of states increases linearly with increasing magnetic field.
Consequently, the higher Landau levels are gradually depleted as the magnetic
field is increased at a constant electron density. At sufficiently high fields, all elec-
trons will occupy the lowest Landau level with lC = 0. The possibility to control
the occupation of the Landau levels with the magnetic field is essential for the
description of the QHE as will be discussed in Section 5.3.2.

5.2 Two-Dimensional Electron Systems in Real
Semiconductors

The QHE is observed in two-dimensional electron gases (2DEGs). Therefore, in
this section, we discuss how a 2DEG can be realized in real semiconductors. The
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section starts with an introduction to the properties of real semiconductors, such
as GaAs and AlGaAs, and their heterojunctions and heterostructures. Epitaxial
growth techniques are also treated briefly.TheGaAs/AlGaAs semiconductor sys-
tem is chosen as example because the majority of quantum Hall devices used as
resistance standards in quantum metrology has been realized with this material
system. The discussion shows how the concept of a two-dimensional semicon-
ductor can be made a physical reality.
The QHE is an electron transport effect. Therefore, free conduction electrons

with suitable transport properties must be inserted in a semiconductor het-
erostructure by an appropriate doping technique to observe the QHE. A special
doping technique known as modulation doping produces electron gases with
high mobility of the charge carriers as required for the QHE. Modulation doping
is discussed at the end of the section.

5.2.1 Basic Properties of Semiconductor Heterostructures

Two-dimensional electron systems can be realized by the so-called semicon-
ductor heterojunctions. These structures were first suggested by Kroemer [10].
H . Kroemer together with Z.I. Alferov received a part of the Noble Prize in
physics in 2000 for the development of this technology. A heterojunction is the
interface formed between two semiconductors with different band gap energy
or between a semiconductor and a metal or insulator. A prominent example of a
semiconductor/insulator heterojunction is the Si/SiO2 interface in MOSFETs. A
heterostructure is composed of one or more heterojunctions.
The most prominent example of a semiconductor/semiconductor heterojunc-

tion is the GaAs/AlGaAs interface. GaAs is a compound III–V semiconductor
made of an element of the third (Ga) and fifth (As) group of the periodic table
of elements. Other prominent III–V semiconductors are, for example, InP, InAs,
AlAs, andGaSb. GaAs is a direct-gap semiconductor.Themaximumof its upper-
most valence band and the minimum of its lowest conduction band are located
at the center of the Brillouin zone (Γ point). The band gap energy amounts to
Eg = 1.42 eV at room temperature. In contrast, AlAs has an indirect band gap; that
is, the maximum of the uppermost valence band and the minimum of the lowest
conduction band are located at different points of the Brillouin zone.The valence
bandmaximum is located at theΓ point, as inGaAs.Theminimumof the conduc-
tion band is found close to the boundary of the Brillouin zone in (1,0,0) direction,
that is, close to theX point. At room temperature, the energy of the indirect gap is
Eg = 2.16 eV. Detailed information on the band structure andmaterial parameters
of GaAs and AlAs can be found, for example, in Ref. [11].
Besides the binary compoundsGaAs andAlAs, a ternarymixed crystal AlGaAs

can be grown. In themixed crystal, the Ga andAl atoms are randomly distributed
over the lattice sites of the group III elements.The fraction of theGa andAl atoms
of this ternary III–V compound semiconductor can be continuously varied. This
property is reflected by the nomenclature AlxGa1−xAs with the aluminum mole
fraction x varying between 0 and 1. As the aluminummole fraction x is increased,
the band gap energy varies between 1.42 eV (GaAs, x = 0) and 2.16 eV (AlAs,
x = 1). For x< 0.4, AlxGa1−xAs has a direct band gap as in GaAs. For larger x, an
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Figure 5.2 TEM image of a
GaAs/AlAs/GaAs
heterostructure. The
individual dots represent
single molecular units of
GaAs (top, bottom) and AlAs
(center). Source: Courtesy of
PTB.
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indirect band gap is obtained as in AlAs. The effective mass approximation with
an isotropic effective massm*, as discussed in Section 5.1, is sufficient to describe
electrons close the Γ point in GaAs and direct-gap AlxGa1−xAs. Since the QHE is
observed at low temperatures of a few kelvin and below, it is worth mentioning
that the bandgap energies increase as the temperature is lowered, for example, to
1.52 eV inGaAs at 4K.The principal features of the band structure do not change
with temperature.
With respect to the growth of heterojunctions, semiconductor technology and,

in turn, quantum metrology benefit from the fortunate circumstance that GaAs
and AlxGa1−xAs exhibit almost the same lattice constant for all values of x. This
feature allows the fabrication of GaAs/AlxGa1−xAs heterostructures with almost
perfect single crystalline interfaces using epitaxial crystal growth techniques.The
high quality of such interfaces is illustrated in Figure 5.2, which shows a transmis-
sion electron microscope (TEM) image of a GaAs/AlAs/GaAs heterostructure.
The single crystalline structure is continued over the interfaces at which no crys-
tal defects are observed.

5.2.2 Epitaxial Growth of Semiconductor Heterostructures

High-quality epitaxial crystal growth of GaAs/AlxGa1−xAs heterostructures is
achieved using molecular beam epitaxy (MBE) [12] or metalorganic vapor-phase
epitaxy (MOVPE), also known as metalorganic chemical vapor deposition
(MOCVD) [13]. MBE is performed in an ultrahigh vacuum chamber with a
base pressure below 10−10 Pa. This low pressure reflects the ultralow impurity
concentration in the growth chamber. A sketch of an MBE growth chamber is
shown in Figure 5.3. Attached to the chamber are effusion cells, which contain
high-purity Ga, Al, and As in the solid state. The effusion cells are heated to
temperatures on the order of 1000 ∘C so that the source materials evaporate.
The gaseous source materials are released to the vacuum chamber if shutters
in front of the effusion cells are opened. In the chamber, the source materials
condense on the substrate, where they react with each other. The substrate is
often rotated to achieve spatially uniform crystal growth over a large area. The
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Figure 5.3 Schematic representation of an MBE
chamber for the epitaxial growth of
GaAs/AlxGa1−xAs heterostructures. The vacuum
pumps needed to achieve a base pressure below
10−10 Pa are not shown. Source: Courtesy of K.
Pierz, PTB.

reaction between Ga, Al, and As is controlled by the substrate’s temperature and
the flow rate of the sourcematerials, which can be adjusted by the temperature of
the effusion cells. For example, a substrate temperature above 600 ∘C is required
for the growth of a GaAs crystal with perfect stoichiometry. The growth rate
is low, typically 1 μm/h, which corresponds to the growth of one monolayer
of GaAs (thickness 0.28 nm) per second. Thanks to the low growth rate, the
thickness of the epitaxial layers can be precisely controlled with a resolution of
a single atomic layer. The growth of the layers can be monitored in situ using
reflection high-energy electron diffraction (RHEED). The Si effusion cell shown
in Figure 5.3 can be used to add dopants to the GaAs or AlxGa1−xAs layers in a
controlled way.The ultrahigh vacuum of the growth chamber and the high purity
of the source materials ensure that the concentration of unwanted impurities is
very low in MBE-grown GaAs/AlxGa1−xAs heterostructures.
In MOVPE, the metallic source materials, Ga and Al, are provided in the form

ofmetalorganic compounds, such as trimethylgallium.The group-V elements are
supplied as hydrides, such as arsine (AsH3). As an alternative, less toxic group-V
precursors were also developed and applied, for example, tertiarybutylarsine for
the growth of As compounds [14]. Using a carrier gas (e.g. hydrogen), the met-
alorganic compounds are transported to the MOVPE reaction chamber. In the
chamber, they chemically react with the group-V precursor at the surface of the
substrate, on which the GaAs/AlxGa1−xAs heterostructure grows epitaxially. In
contrast to MBE, MOVPE does not require ultrahigh vacuum, but is carried out
at pressures on the order of 104 Pa.

5.2.3 Semiconductor QuantumWells

Using MBE or MOVPE, a thin layer of GaAs can be sandwiched between two
layers of Alx Ga1−x As. Figure 5.4a depicts the band gap energy of this quantum
well heterostructure versus the growth direction z, that is, the direction normal
to the layers.The aluminummole fraction is assumed to be x = 0.3, which results
in Eg = 1.8 eV for AlxGa1−xAs at room temperature. As mentioned earlier, the
band gap energy of GaAs is Eg = 1.42 eV at room temperature.
Most important for the electronic properties of the heterostructure is the band

alignment, which is shown in Figure 5.4b at the Γ point of the Brillouin zone.
The conduction band of GaAs is located below the AlxGa1−xAs conduction band,
while the opposite order is found for the valence bands. This is referred to as
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Figure 5.4 Spatial variation of the band gap
energy Eg of an AlxGa1−xAs/GaAs/AlxGa1−xAs
(x = 0.3) quantum well heterostructure (a) and
spatial variation of the conduction band and
valence band (b) versus the growth direction z.
The values of Eg refer to room temperature. An
exchange of charge carriers between the layers,
which would result in space charge regions and
band bending, is not considered in the figure.
Source: Göbel and Siegner 2015 [7]. Reproduced
with permission of John Wiley and Sons.
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type I or straddling type band alignment and results in the formation of poten-
tial wells in the conduction and valence band. The potential wells ideally have a
rectangular shape corresponding to atomically smooth interfaces between GaAs
and AlxGa1−xAs, as seen in the TEM image of Figure 5.2.The depth of the wells is
given by the band edge discontinuities of the conduction band,ΔEC, and valence
band,ΔEV. At the Γ point, their summust equal the difference between the band
gap energies of GaAs and AlxGa1−xAs, that is,ΔEg =ΔEC +ΔEV must hold. How
the band gap difference is split between the conduction and valence band depends
on the detailed electronic structure of the interface. For the GaAs/AlGaAs sys-
tem, we roughly have ΔEC/ΔEV = 3/2.
Summarizing this discussion, we note that for sufficiently thinGaAs layers (typ-

ically Lz < 100 nm), a rectangular quantum well with a finite barrier height is
formed in both the conduction and valence band, that is, for electrons and holes.
Thus, a two-dimensional semiconductor is realized, in which a two-dimensional
electron gas can be introduced.

5.2.4 Modulation Doping

The tremendous technological success of semiconductors rests, to a large extent,
on the fact that the concentration of mobile carriers can be varied by orders of
magnitude by doping. Doping refers to the replacement of atoms of the host
lattice by atoms with more (donors) or less electrons (acceptors). Doping is
required to perform electron transport studies in wide-gap semiconductors at
low temperatures T since for kT ≪Eg, the density of intrinsic conduction elec-
trons is negligibly small. Under this condition, donors provide the required extra
mobile electrons, for example, when studying the QHE. Yet, after the electrons
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have been transferred from the donors to the conduction band, the positively
charged donors act as scattering centers. At low temperatures, scattering at
ionized donors is the limiting factor of the electron mobility 𝜇 = e𝜏/m* (𝜏 scat-
tering time), which is one of the key parameters for technological applications
of semiconductors and also for the QHE. Scattering can be strongly reduced by
modulation doping [15]. In modulation-doped structures, the donors are spa-
tially separated from themobile electrons, and, thus, scattering at ionized donors
is greatly reduced. Electron mobilities exceeding 107 cm2 V−1 s−1 have been
achieved at low temperatures [16]. This value is extremely high compared to, for
example, the room temperature electron mobility of 8000 cm2 V−1 s−1 in GaAs.
The concept of modulation doping can be applied to a quantum well het-

erostructure by introducing Si donors in a thin layer in one of the AlGaAs
barriers. The doped layer must be separated from the GaAs well by an undoped
AlGaAs spacer layer. At elevated temperatures, the donors are thermally excited
and their extra electrons are captured in the GaAs well. Thus, a 2DEG with
high electron mobility forms in the quantum well. At low temperatures, the
mobile electrons remain in the quantum well and provide a suitable arena for
studies on the QHE. This consideration shows another advantage of modulation
doping, besides the largely increased electron mobility. In modulation-doped
heterostructures, the mobile electrons do not freeze out at low temperatures,
in contrast to homogeneously doped semiconductors. Modulation doping
has found wide applications in high-frequency field-effect transistors called
MOSFETs or high-electron-mobility transistors (HEMTs).
A 2DEG can also form at a single heterojunction if band bending is consid-

ered. We examine the modulation-doped structure of Figure 5.5. From bottom
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(thickness on the order of 10 nm), the
Al0.3Ga0.7As[Si] doping layer (typical thickness
50 nm, doped with Si donors at a typical
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holds a 2DEG as shown (in red) in the layer
sequence. Source: Courtesy of K. Pierz, PTB.
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to top, the structure consists of a GaAs substrate and buffer layer, the undoped
Al0.3Ga0.7As spacer layer, and the Al0.3Ga0.7As[Si] doping layer. A thin GaAs cap
layer is required to prevent oxidation of the AlGaAs in real structures.The lower
part of the figure schematically shows the conduction and valence band pro-
file together with the Fermi level, EF, which separates unoccupied from occu-
pied electronic states.The Fermi level is constant in thermodynamic equilibrium
as shown in the figure. The donors are ionized, and the extra electrons of the
donors have been transferred across the spacer layer to the GaAs, where they are
attracted to the interface by the electric field of the ionized donors. The charge
transfer is accompanied by band bending so that a triangular potential well is
formed at the interface of the GaAs and the Al0.3Ga0.7As spacer layer. The low-
est quantized energy level of the potential well is located below the Fermi level.
Therefore, the quantized energy level is populated with electrons. As a result, a
2DEG is formed at the interface of the GaAs and the Al0.3Ga0.7As spacer layer.
Heterostructures of the type shown in Figure 5.5 can be grown more easily than
rectangular quantum wells by MBE orMOVPE.Therefore, they are used in most
of today’s quantum Hall resistors.

5.3 The Hall Effect

The understanding of the QHE requires a basic knowledge of the classical Hall
effect. Therefore, we give a brief description of the latter before we consider
the QHE.

5.3.1 The Classical Hall Effect

5.3.1.1 The Classical Hall Effect in Three Dimensions
The classical Hall effect was discovered by Edwin Herbert Hall in 1879. It refers
to the generation of a voltage in a current-carrying wire placed in an external
magnetic field. As shown in Figure 5.6, the voltage drop occurs perpendicularly
to the directions of the electric current and the magnetic field.
TheHall effect is the consequence of the Lorentz force acting onmoving charge

carriers in a magnetic field. If only electrons contribute to the current, the Hall
effect results in the accumulation of electrons at the top surface of the conductor
of Figure 5.6. The charge accumulation gives rise to an electric field Ey in the y
direction. Since the current is zero in the y direction, the Lorentz force must be

Figure 5.6 Experimental arrangement for the
observation of the Hall effect in a
three-dimensional conductor. Source: Göbel
and Siegner 2015 [7]. Reproduced with
permission of John Wiley and Sons.
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balanced by the effect of the electric field Ey in the steady state. We obtain for the
total force Fy in the y direction

Fy = (−e)Ey − (−e)vxBz = 0 (5.11)

where (−e) is the charge of the electron and vx the electron drift velocity. Thus,
the Hall field is given by Ey = vxBz and the Hall voltage by UH = EyLy = vxBzLy. If
the current is expressed as

Ix = jxLyLz = (−e)n3DvxLyLz (5.12)

where jx is the current density and n3D the electron density in a three-
dimensional conductor, the Hall voltage can be written as

UH = − 1
en3D

1
Lz

IxBz = RH
1
Lz

IxBz (5.13)

The Hall coefficient, defined as RH = −1/(en3D), is a measure of the carrier
density. In fact, the Hall effect is routinely used to determine the carrier den-
sity in metals and semiconductors. For the latter, a more general description can
be worked out, which considers electron and hole currents. For the present dis-
cussion, the most important quantity is the Hall resistance Rxy defined as

Rxy =
UH

Ix
(5.14)

The Hall resistance is to be distinguished from the longitudinal resistance
Rxx = Ux/Ix, where Ux is the voltage drop in the direction of the current.

5.3.1.2 The Classical Hall Effect in Two Dimensions
The description of the Hall effect in three dimensions, as given in Section 5.3.1.1,
can be extended to a two-dimensional electron gas in a straightforward way. We
consider a 2DEG in the x–y plane normal to themagnetic fieldB=Bz.The dimen-
sion Lz is then meaningless and the three-dimensional electron density n3D is to
be replaced by a two-dimensional density n2D (number of electrons per area). In
two dimensions, the Hall voltage becomes

UH = − 1
en2D

IxBz (5.15)

The Hall resistance can be expressed as in Eq. (5.14), where UH is taken
from Eq. (5.15). The longitudinal resistance Rxx = Ux/Ix is defined as in the
three-dimensional case.
In the literature, often the resistivity 𝜌 is considered rather than the resistance

R since the resistivity characterizes the physical properties of a material or elec-
tronic system independent of its size. We note that in two-dimensional space,
Rxx = 𝜌xxLx/Ly.Therefore, the longitudinal resistivity and resistance have the same
physical dimension. Moreover, the Hall resistance and the Hall resistivity are
equal and independent of the size of the two-dimensional conductor:

Rxy = 𝜌xy = − 1
en2D

B (5.16)
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The occurrence of components 𝜌xx and 𝜌xy shows that the resistivity 𝝆 is a
tensor, which is defined by the relation(

Ex
Ey

)
=
(
𝜌xx 𝜌xy
−𝜌xy 𝜌xx

) (
jx
jy

)
. (5.17)

The inverse of the resistivity tensor 𝝆 is the conductivity tensor 𝝈, defined by(
jx
jy

)
=
(
𝜎xx 𝜎xy
−𝜎xy 𝜎xx

) (
Ex
Ey

)
. (5.18)

The components of 𝝆 and 𝝈 are related.We explicitly state some of the relations
here since they have implications in the QHE regime:

𝜌xx =
𝜎xx

𝜎
2
xx + 𝜎2xy

(5.19)

𝜎xx =
𝜌xx

𝜌
2
xx + 𝜌2xy

(5.20)

5.3.2 Physics of the Quantum Hall Effect

For the description of the QHE, we build on the results of Section 5.1, that is, we
consider a semiconductor with parabolic bands as a model for the GaAs/AlGaAs
heterostructures that are widely used in QHE metrology. The discussion will be
restricted to the Landau levels of the lowest quantum well state and the Zeeman
splitting will be neglected. In Section 5.1.2, we have seen that the number of elec-
tron states per Landau level (and per area) depends linearly on the magnetic field
in two-dimensional semiconductors. Let us now consider a 2DEG with a given
electron density n2D at zero temperature. Thus, thermal excitations between dif-
ferent Landaus levels are suppressed. Changing the magnetic field, the density
of states D0D = eB/h can be adjusted such that the Landau levels with lC = 0,
1, …, (i− 1) are completely filled with electrons, while all other Landau levels
(with lC > i− 1) are empty.The filling factor f defined as f = n2D/D0D is then given
by f = i, that is, by an integer. An equivalent statement is to say that the Fermi
level is located in the energy gap between the Landau levels with lC = i− 1 and
lC = i. Moreover, the electron density is given by n2D = ieB/h. If this expression is
inserted in Eq. (5.16), we obtain for the absolute value of the Hall resistance

Rxy(i) =
h
e2

1
i

(5.21)

For an integer filling factor, the Hall resistance only depends on fundamental
constants and an integer.
Moreover, the longitudinal resistance Rxx vanishes, Rxx = 0, since in a com-

pletely filled Landau level scattering of electrons is suppressed due to the lack
of empty final states. Consequently, the longitudinal resistivity is zero, 𝜌xx = 0.
Equations (5.19) and (5.20) imply that the longitudinal conductivity is also zero,
𝜎xx = 0.Thus, if the Fermi level is located in the energy gap between Landau levels,
the current is driven by the Hall voltage.
The simple argument presented so far predicts the particular resistance values

Rxx = 0 and Rxy(i)= h/(ie2) for singular values of the magnetic field, that is, if (and
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Figure 5.7 Experimentally determined Hall resistance Rxy (left scale) and longitudinal
resistance Rxx (right scale) as a function of the magnetic flux density of a GaAs/AlGaAs
heterostructure at a temperature T = 0.1 K (measurement current 1 μA). Some integer filling
factors are indicated. Source: Courtesy of F. Ahlers, PTB.

only if ) the field corresponds exactly to an integer filling factor. Surprisingly, how-
ever, one observes resistance valuesRxx = 0 andRxy(i)= h/(ie2) over extended field
ranges around integer filling factors.This finding is illustrated by the experimen-
tal data of Figure 5.7, obtained from aGaAs/AlGaAs heterostructure at 0.1 K.The
Hall resistance shows pronounced plateaus Rxy(i) = h/(ie2), and Rxx disappears
over the corresponding field ranges.This experimental result is referred to as the
QHE, discovered by K. v. Klitzing when studying 2DEGs in Si MOSFETs in 1980
[1]. The ratio h/e2 is named the von Klitzing constant, RK = h/e2. Consequently,
the quantized Hall resistance can be expressed as

Rxy(i) =
RK

i
(5.22)

To emphasize the close relation between the QHE and the paradigm of quan-
tum metrology, that is, the counting of discrete quanta, the filling factor can be
rewritten. We assume that A is the area of the sample and Φ = AB the mag-
netic flux through it and introduce the flux quantum Φ0 = h/e (charge e since
single electrons are considered rather than Cooper pairs with charge 2e as in
Chapter 4). We can then write

f =
n2D
D0D =

An2D
AB e

h

=
Ne
Φ
Φ0

=
Ne

NΦ
(5.23)

with Ne and NΦ being the number of electrons and flux quanta in the sample,
respectively. Equation (5.23) shows that the filling factor can be interpreted as
the ratio between the number of electrons and the number of flux quanta.
Considerable theoretical work has been spurred by the experimental result that

the Hall resistance is quantized over an extended range of the magnetic field
or the filling factor.Theory has been guided by the experimental observation that
the width of the Hall resistance plateaus depends on the specific properties of the
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Figure 5.8 Schematic representation of the density of states of inhomogeneously broadened
Landau bands. Dotted: localized states close to the lower and upper boundary of the bands.
Source: Göbel and Siegner 2015 [7]. Reproduced with permission of John Wiley and Sons.

individual sample. More precisely, the width of the plateaus is found to shrink
for 2DEGs with very high electron mobility (106 cm2 V−1 s−1 and above). At low
temperatures, when phonon scattering is strongly reduced, the electron mobility
is a measure of disorder-induced scattering. Therefore, the experimental results
indicate that disorder should be included in the description of the QHE.
Disorder arises from nonideal heterojunctions and from residual impurities

and is an intrinsic property of ternary mixed crystals such as AlxGa1−xAs. Thus,
disorder is present in any real semiconductor mixed crystal heterostructure,
where it gives rise to a spatially varying potential. Consequently, the Landau
levels are inhomogeneously broadened and they are better described as Landau
bands [17].The electronic states are localized close to the upper and lower energy
boundary of the inhomogeneously broadened Landau bands, as schematically
shown in Figure 5.8. Electrons in these localized states are immobile and do
not contribute to electronic transport. Only in the center of the Landau bands,
extended states are found. Electrons in extended states can carry current in the
usual way. As the magnetic field (or more generally the filling factor) is changed,
the Fermi level moves through the Landau bands. Yet, as long as the Fermi level
moves through localized states, the density of mobile electrons does not change.
Since only the mobile electrons contribute to the current, the Hall resistance
does not change either and a plateau is observed. Thus, a model involving
disorder can qualitatively explain the basic feature of the QHE.
Despite the progress achieved including disorder in the theoretical descrip-

tion of the QHE, this approach cannot describe all aspects of the QHE. In fact,
even today, there exists no complete theoretical description of the QHE in real
samples. Such a theory should include the effects of finite sample size, finite tem-
perature, and the contacts to the 2DEG.
The finite size of a real semiconductor 2DEG is considered in the edge channel

model of the QHE developed by Büttiker [18], which we will briefly outline in the
following text. A more detailed summary can be found, for example, in Ref. [19].
The edge channel model considers that the electron density of a 2DEG drops

to zero and the Landau levels bend upward at the boundaries of a sample of finite
size. Consequently, Landau levels, which are completely filled in the interior of
the 2DEG, pierce the Fermi level at points close to the sample edges. At these
points, these Landau levels are partially occupied. Therefore, one-dimensional
conducting channels are generated close to the sample edges, one for each
populated Landau level. The classical analog of these edge channels is the skip-
ping orbits of electrons moving in a magnetic field along a boundary. Electronic
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transport in edge channels can be described by the Landauer–Büttiker formalism
for transport in one-dimensional conductors [20–22]. In this approach, the cur-
rent is considered as the driving force and the resulting electric field distribution
is calculated.The current is described by transmission and reflection coefficients
and the chemical potential difference over one-dimensional conductors. If this
approach is applied to a perfect one-dimensional conductor at zero magnetic
field, in which no scattering occurs (i.e., ballistic transport), the inverse of
the resistance (i.e. the conductance) is found to be quantized in units of e2/h
[23]. For the QHE, edge channels with opposite direction of the current must
be considered, which are located at opposite edges of the 2DEG. The edge
channel model of the QHE then shows that the Hall resistance is quantized,
Rxy(i) = h/(ie2), if backscattering of electrons between edge channels of opposite
direction is negligible.
The shortcoming of the edge channel model is that it assumes the current to

flow only close to the boundaries of a QHE sample. This assumption contradicts
experimental observations [6].Therefore, more sophisticatedmodels of the QHE
have been developed [6, 24, 25], which, in particular, correctly describe the cur-
rent distribution in the QHE regime. The details are, however, beyond the scope
of this introductory text.
Still more theoretical work is needed to develop a complete description of all

details of the QHE. Nonetheless, it is undisputed in theory that the QHE is a uni-
versal effect, which yields accurately quantized Hall resistance values in a variety
of different materials.The universality of the QHE is strongly supported by topo-
logical arguments [26]. It has been shown that the quantized Hall conductance,
and hence the quantized Hall resistance, is a topological invariant [26]. A topo-
logical phase transition and a change of the quantized Hall resistance can only
occur if the number of occupied Landau levels is altered, giving rise to a robust
and highly reproducible quantum effect. In 2016, David J. Thouless, F. Duncan
M. Haldane, and J. Michael Kosterlitz received the Nobel Prize in physics for the
theoretical discovery of topological phases of matter. With respect to the univer-
sality of the QHE, we also note that theory does not predict the QHE to depend
on the gravitational field [27]. Corrections from quantum electrodynamics are
predicted at the level of 1 part in 1020 only [28]. Experimental tests of the repro-
ducibility and universality of the QHE are treated in Section 5.4, which addresses
the impact of the QHE on metrology.
At the end of this section, we emphasize that we have discussed the integer

QHE, which must be distinguished from the fractional quantum Hall effect
(FQHE). The FQHE occurs in 2DEGs with electron mobilities well above
106 cm2 V−1 s−1 at very high magnetic fields above 10T and temperatures
in the mK range. Under these conditions, plateaus of the Hall resistance Rxy
(f ) = h/(fe2) are observed at fractional values of the filling factor f (such as 1/3,
2/3, 2/5, 3/7) [29]. The FQHE is the signature of a new quantum state generated
by many-body interaction as first pointed out by Laughlin [30]. In 1998, D. C.
Tsui, H. L. Störmer, and R. B. Laughlin received the Noble Prize in physics for
the discovery of the FQHE.
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5.4 Metrology Using the Quantum Hall Effect

The QHE has made a tremendous impact on resistance and impedance metrol-
ogy notwithstanding that a complete theoretical description of the QHE in real
semiconductor samples has not yet been presented. We review the impact of the
QHE onmeasurements of DC resistance in Section 5.4.1. In the present SI, quan-
tumHall resistance standards are routinely used by national metrology institutes
to realize and disseminate the SI ohm linked to the defining constants e and h.
The QHE was used to set up a conventional ohm scale already in the previous SI.
In Section 5.4.2, the now abrogated conventional ohm is treated, and the changes
are highlighted that the present SI caused to resistancemetrology upon its imple-
mentation in 2019.These changes are similar to those in voltagemetrology, which
are discussed in Section 4.1.5.2. The technology of the widely used GaAs-based
DC quantum Hall resistors is reviewed in Section 5.4.3, which also addresses
some aspects of resistance scaling.
In recent years, AC measurements have also benefitted from the QHE. It has

been shown that reproducible quantized resistance values can be obtained if Hall
voltages are measured on specially designed QHE resistors to which an AC cur-
rent is applied [3]. The AC resistance can be directly compared to capacitance
so that the QHE links capacitance to the defining constants e and h [2], thereby
realizing the SI farad. Quantum Hall measurements in the AC regime and the SI
farad are discussed in Section 5.4.4. Section 5.4 is concluded by a brief discussion
of the relation between electrical metrology and the fine-structure constant.

5.4.1 DC Quantum Hall Resistance Standards, the SI Ohm

The QHE allows quantized DC resistance values to be realized, which depend
only on the defining constants e and h and an integer. Its importance for metrol-
ogy rests also on the fact that the QHE is highly reproducible and universal, that
is, independent of the type of 2DEG or the particular sample properties. This
property of the QHE provided an important argument to select the Planck con-
stant h as a defining constant, as discussed in Section 7.1.
Quantized Hall resistances have been found to agree with each other within an

uncertainty of a few parts in 1010 and better if the guidelines for QHE metrology
are followed [31]. Observation of the guidelines ensures that the sample prop-
erties and experimental conditions are sufficiently close to the idealized case of
the QHE treated in Section 5.3.2. The assumptions made for the idealized case
include zero temperature, negligible influence of the contacts to the 2DEG, and
negligible effects due to the finite measuring current. Following the guidelines
[31], QHE measurements of GaAs/AlGaAs heterostructures were in agreement
with measurements of Si MOSFETs within an uncertainty of 3.5 parts in 1010
[32]. More recently, QHE measurements of GaAs/AlGaAs heterostructures
and graphene were found to agree within an uncertainty below 9 parts in
1011 [33–35]. This result is noteworthy since graphene is not a conventional
semiconductor. Graphene consists of a monolayer of carbon atoms arranged on
a hexagonal lattice, and its electronic properties and QHE are quite different
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from those of GaAs/AlGaAs heterostructures or Si MOSFETs [36–40]. A more
detailed description of graphene can be found in Section 5.5. The universality of
the QHE was also corroborated comparing quantized Hall resistances at filling
factors 2 (integer QHE) and 1/3 (fractional QHE) [41]. The expected resistance
ratio of 6 was experimentally verified within an uncertainty of 6 parts in 108 [41].
The universality is further supported by experimental studies of the quantum
anomalous Hall effect in ferromagnetically doped topological insulators at
zero magnetic field [42]. These studies showed the quantized anomalous Hall
resistance to agree with RK within an uncertainty of 2.5 parts in 107 [42].
The excellent reproducibility of the QHE and the direct link to e and h make

quantumHall resistance standards [43] the prime choice for the realization of the
SI ohm. The relative uncertainty of this SI ohm realization can be inferred from
the reproducibility tests and, thus, can be better than 10−10. To fully harmonize
resistance metrology worldwide, the Consultative Committee for Electricity and
Magnetism (CCEM) of theMeter Convention recommends the use of the follow-
ing value of the von Klitzing constant, which has been calculated to 15 significant
digits from the defining constants e and h introduced in Section 2.2 [44]:

RK = 25 812.807 459 3045Ω (5.24)

The choice of 15 significant digits allows one to quote accurate resistance values
even if the uncertainty of resistance comparisons can be further reduced by some
orders of magnitude below the present state of the art of parts in 1011.
To highlight the impact of the QHE, we discuss an alternative method for the

realization of the SI ohm, which is illustrated in Figure 5.9.This traceability route
abstains from the use of the QHE. It is a valid method both in the previous SI
and the present one [44]. The starting point is a calculable capacitor [45]. Such
a capacitor allows an SI value of the capacitance C to be realized traceable to
the meter and the SI value of the electric constant (permittivity of vacuum) 𝜀0
(the SI value of 𝜀0 is discussed in Section 5.4.5). From the SI farad, SI values of
the capacitive reactance, (𝜔C)−1, can be derived. The AC resistance of artifact
resistance standards is then linked to the capacitive reactance with a so-called
quadrature bridge at kilohertz frequencies.The artifact resistance standardsmust
have a calculable AC/DC difference [46, 47] so that their DC resistance can be
derived to finally obtain a realization of the SI ohm. With this approach, the SI
ohm can be realized with a relative uncertainty of a few parts in 108 [48, 49].
This uncertainty is more than two orders of magnitude greater than the uncer-
tainty of theQHE-based realization.Themaintenance and dissemination of the SI
ohm are evenmore problematic if artifact standards are used instead of quantum
Hall resistors. Artifact standards are sensitive to the environmental conditions,
such as temperature and pressure. As a result, it is difficult to maintain a resis-
tance scale with a temporal drift of less than 10−7 per year with artifact standards
only [50].

5.4.2 The Conventional Ohm in the Previous SI

Decades before the present SI was implemented in 2019, it had already been real-
ized that resistancemetrology could be significantly harmonized using the highly
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Figure 5.9 Realization of the SI ohm starting with a
calculable capacitor without the QHE. Not shown in this
schematic representation are the various measuring
bridges required to upscale or downscale capacitances
and resistances.
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reproducible QHE. At the end of the 1980s, steps were taken to base resistance
measurements on the use of the QHE and a fixed, agreed-upon value of the von
Klitzing constant RK. In 1987, the General Conference of the Meter Conven-
tion (CGPM) instructed the International Committee for Weights andMeasures
(CIPM) to recommend a value of the von Klitzing constant [51]. In 1988, the
CIPM recommended a value that was determined using the best experimental
data available at that time and should be used from 1 January 1990 [52]. This
conventional value or agreed-upon value of RK was denoted by RK-90. RK-90 was
introduced together with the conventional value of the Josephson constant K J-90
(see Section 4.1.5.2) and was given by

RK-90 = 25 812.807Ω (5.25)

To ensure the compatibility of RK-90 and the then valid SI value of RK, RK-90 was
assigned a conventional relative uncertainty. The uncertainty was 2 parts in 107
at the time RK-90 was introduced and reduced to 1 part in 107 later.
In close analogy to the Josephson case of Section 4.1.5.2, the relation

R90 =
RK-90

i
(5.26)

established a highly reproducible resistance scale R90. In Eq. (5.26), RK-90 could be
treated as a constant with zero uncertainty since no comparison to SI quantities
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was made. Equation (5.26) provided a representation of the unit ohm, namely,
the conventional ohm or ohm90, yet not a realization of the ohm according to
the definition of the SI. The non-SI unit ohm90 was disseminated and used in
electricalmetrology from1990 to the implementation of the present SI on 20May
2019. This concept took advantage of the superior reproducibility of the QHE.
Consequently, on-site resistance comparisons between the Bureau International
des Poids et Mesures (BIPM) and national metrology institutes showed primary
quantum Hall resistance standards to agree within an uncertainty of a few parts
in 109 [53].
The conventional value of the von Klitzing constant RK-90 has been abrogated in

the present SI (as well as the conventional value of the Josephson constant K J-90,
see Section 4.1.5.2) [54].The disseminated electrical units are now fully coherent
with the SI. Since RK of Eq. (5.24) and RK-90 of Eq. (5.25) are slightly different,
resistance-related quantities underwent a small discontinuous change when the
present SI was implemented.The relative change was approximately 1.779× 10−8
[54]. Reference [54] instructed users of electrical metrology how to deal with this
change and ensured a seamless transition from the previous SI to the present one.

5.4.3 Technology of DC Quantum Hall Resistance Standards
and Resistance Scaling

Nowadays, GaAs/AlGaAs heterostructures of the type shown in Figure 5.5 are
mostly used as quantum Hall resistance standards. The heterostructures are
patterned into Hall bars with typical widths of several hundred micrometers.
Figure 5.10 shows a schematic representation of a Hall bar and Figure 5.11 a
photograph of a quantumHall resistance standard.The 2DEG of such a quantum
Hall standard has a typical electron mobility 𝜇 = 5× 105 cm2 V−1 s−1 and carrier
density n2D = 5× 1011 cm−2 [53]. The latter corresponds to a magnetic field of
10T for the observation of the plateaus with i = 2. Measurements are performed
at temperatures around 1K in liquid helium cryostats. The measuring current
needs to be chosen smaller than the so-called critical current, at which the QHE
breaks down. A detailed review of the breakdown of the QHE can be found,
for example, in Ref. [55]. In GaAs quantum Hall resistors, the critical current
density is typically 1A/m [43], yielding a critical current of approximately 400 μA
for a typical sample width of 400 μm. A measuring current of 40 μA is then a
reasonable choice since it is ten times smaller than the critical current, but large
enough to allow high-precision experiments to be performed.

B

Ux

Ix UH

Ix

Figure 5.10 Schematic representation of a
typical Hall bar with two current contacts and
six voltage contacts (three on either side).
Source: Göbel and Siegner 2015 [7].
Reproduced with permission of John Wiley and
Sons.
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Figure 5.11 Photograph of a
GaAs/AlGaAs quantum Hall
resistance standard showing
two Hall bars mounted in a
chip carrier. Source: Courtesy
of PTB.

For metrological purposes, the plateaus with i = 2 and 4 are mostly used. The
use of odd filling factors is disadvantageous since, in real structures, the upper-
most filled Landau level is then separated from the lowest empty Landau level
only by the small Zeeman energy splitting. The i = 2 and 4 plateaus produce
resistance values RK/2 and RK/4 of approximately 12.906 and 6.453 kΩ, respec-
tively. Starting from these values, potentiometric methods and current compara-
tor bridges are used to build up the resistance scale [43]. This scale extends from
milliohms to teraohms and consists of decade resistance values. Among the dif-
ferent comparators, the cryogenic current comparator (CCC) [56] is the most
accurate instrument. It allows resistance scaling to be performed with relative
uncertainties of 10−9 and better (see Section 4.2.3.3). CCCs are used to compare
quantum Hall resistance standards at liquid helium temperatures to secondary
resistance standards with decade values, such as 100Ω, at room temperature.
This measurement is the first step in building up a practical decade resistance
scale at room temperature.
The need for resistance values that cover a broad range raises the question

whether QHE bars, such as the one shown in Figure 5.10, can be connected in
series or in parallel. In principle, a series circuit of m QHE bars should realize
accurate quantized resistance values mRK/i. Similarly, a parallel circuit should
realize small resistances RK/(mi).
Regarding this approach, one needs to recall that the quantized Hall resistance

Rxy(i) = RK/i is the result of a four-terminal measurement (as is the longitudinal
resistance Rxx = 0). As shown in Figure 5.10, two separate pairs of contacts are
used for current and voltagemeasurements.Therefore, the resistances of contacts
to the 2DEG do not contribute to the measurement result. In contrast, the con-
tact resistances and the resistances of connecting wires affect the measurement
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if QHE bars are connected in series or parallel circuits. To alleviate this problem,
the so-called multiple connection technique was proposed. It reduces the con-
tribution of contact resistances Rc to approximately (Rc/Rxy)n, where n− 1 is the
number of additional connections [57]. Since contact resistances have typical val-
ues below 1Ω, their effect can be reduced to a negligible level using multiple
connections.
In the earlier experimental work, series and parallel arrays of quantum Hall

resistors were fabricated as integrated circuits with nominal resistance values
from RK/200 to 50 RK [58, 59]. Agreement between nominal andmeasured values
was demonstratedwithin an uncertainty of a few parts in 109 for some arrays [58].
Later, mathematical tools have been developed to design quantum Hall resistor
arrays that well approximate decade resistance values using only a small num-
ber of Hall bars [60]. Reference [61] reports the experimental realization of a
quantum Hall resistor array of 29 Hall bars with a nominal resistance value that
deviates only by 34 μΩ from 1 kΩ. The measured value agrees with the nominal
value within an uncertainty of 2 parts in 107 [61]. With only 16 Hall bars, a quan-
tum Hall resistor array has been realized, whose nominal value deviates only by
340 μΩ from 10 kΩ [62]. Agreement between nominal and measured values has
been demonstrated within an uncertainty of one part in 108 [62].The experimen-
tal realization of a 1MΩ quantum Hall resistor array of 88 Hall bars is reported
in Ref. [63]. In Ref. [64], the relative deviation between the nominal value and the
measured value of a 1MΩ array is 2 parts in 108. To what extent quantum Hall
resistor arrays will impact resistance metrology will be researched in the future.

5.4.4 AC Quantum Hall Resistance Standards, the SI Farad

The SI farad can be realized with a calculable capacitor [45], as discussed at the
end of Section 5.4.1 and illustrated in the lower part of Figure 5.9.The uncertainty
of this realization, however, is limited to a few parts in 108 [65]. To improve the
realization of the SI farad, onemay choose to directly link the farad to the defining
constants e and h using the QHE, as shown in Figure 5.12. A possible traceability
route starts from a DC quantum Hall resistance standard to realize the SI ohm;
see the lower part of the figure. Subsequently, a DC calibration of an artifact resis-
tance standard with calculable AC/DC difference [46, 47] is performed. The AC
resistance of the artifact standard is derived from the known AC/DC difference.
Finally, the SI farad can be derived from the knownAC resistance using a quadra-
ture bridge.Thus, AC resistance and capacitancemeasurements and, in turn, also
inductance measurements can be linked to the defining constants e and h using
the QHE. Thereby, the QHE is harnessed for impedance metrology in general.
So far, we have always assumed that a DC current is applied to a quantum

Hall device. Alternatively, a quantum Hall device can be driven by an AC cur-
rent. The corresponding physics is referred to as the AC QHE.The realization of
the SI farad is substantially simplified if an AC quantumHall resistance standard
is available, as shown in Figure 5.12. The AC resistance of the QHE resistor is
directly compared to a capacitance with a quadrature bridge, and the traceability
routes no longer involve artifact resistance standards if the AC QHE is used.
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Figure 5.12 Realization of the SI
farad starting from a DC quantum
Hall resistance standard (dashed
box) or from an AC quantum Hall
resistance standard. Not shown in
this schematic representation are
the various measuring bridges
required to upscale or downscale
capacitances and resistances.
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QHE measurements in the AC regime are to be performed at kilohertz
frequencies to be compatible with impedance-measuring techniques. These
AC QHE measurements have caused difficulties for many years. In general,
the QHE plateaus were not as flat as in DC measurements and, in addition,
exhibited an unwanted frequency and current dependence [66]. These findings
were attributed to capacitive losses in the Hall bar and between the Hall bar and
its surroundings [66, 67].
A special double-shielding technique was proposed to solve the problem of the

capacitive loss currents [67]. The basic idea of this technique is to ensure that
the current that reaches the current-low terminal of the QHE resistor is exactly
equal to the current that generates the Hall voltage. If this condition is met, the
Hall resistance is determined properly.
A doubly shielded QHE resistor is illustrated in Figure 5.13.TheHall bar is sur-

rounded by two metallic shields separated by a narrow gap. The gap is aligned
along the line of the Hall voltage measurement. The right-hand shield is con-
nected to the current-low terminal. This connection ensures that the capacitive

Figure 5.13 Schematic top view of a doubly
shielded AC quantum Hall resistance
standard. The shields (light gray) are shown as
being transparent. The subscripts CL and CH
stand for current-low terminal and
current-high terminal, respectively. Source:
Göbel and Siegner 2015 [7]. Reproduced with
permission of John Wiley and Sons.
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current ICL, which has generated Hall voltage, reaches the current-low terminal.
Next, we consider the capacitive current ICH, which does not generate Hall volt-
age since it does not cross the Hall voltage line. This current is fed back to its
origin by the left-hand shield and does not reach the current-low terminal, as
required.
The double-shielding technique has made a breakthrough in AC QHE mea-

surements. It ensures correct measurements of the Hall resistance, undistorted
by AC losses. Flat QHE plateaus are observed using doubly shielded QHE resis-
tors. The residual frequency dependence of the quantized AC Hall resistance is
only 1.3 parts in 109 kHz−1 in the kilohertz frequency range [3]. Thus, the AC
quantum Hall resistance standard is as reproducible and reliable as its DC coun-
terpart. Ref. [2] has shown that the SI farad can be realized with an uncertainty of
6 parts in 109 using the ACQHE.The realization based on the ACQHE is at least
as good as that based on calculable capacitors [65]. Thus, the AC QHE can sub-
stantially impact impedance metrology, very much as the DCQHE has impacted
resistance metrology.

5.4.5 Relation Between Electrical Metrology and the Fine-Structure
Constant

The von Klitzing constant RK = h/e2 can be expressed by the fine-structure con-
stant 𝛼, which is the dimensionless scaling factor of the strength of the electro-
magnetic interaction:

RK = h
e2

=
𝜇0c
2𝛼

. (5.27)

In this equation, 𝜇0 is the magnetic constant (permeability of vacuum) and c
the speed of light in vacuum.The electric constant 𝜀0 (permittivity of vacuum) is
related to 𝜇0 by the relation

𝜀0 = 1∕(𝜇0c2) (5.28)

In the present SI, e, h, and c are defining constants with zero uncertainty.There-
fore, a measurement of the fine-structure constant 𝛼 determines the SI value of
the magnetic constant 𝜇0 and, according to Eq. (5.28), also the SI value of the
electric constant 𝜀0 with the same relative uncertainty as 𝛼. The fine-structure
constant can be derived very precisely from atomic physics measurements, such
as the measurement of the anomalous magnetic moment of the electron (see also
Section 9.1.5). Thanks to atomic physics data, 𝛼 is known with a relative uncer-
tainty of only 2.3 parts in 1010 according to the adjustment of the fundamental
constants in 2014 [68]. This uncertainty value was confirmed by the special fun-
damental constants adjustments performed in 2017 to determine the values of
the defining constants h, e, k, and NA [69].
The SI value of 𝜀0 can be used to realize the SI farad with a calculable capacitor

[45], asmentioned in Sections 5.4.1 and 5.4.4.The reverse route is also possible. If
the SI farad is derived from the defining constants e and hwith theQHEaccording
to Figure 5.12, a calculable capacitor can be used to determine 𝜀0, and, in turn,
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𝜇0 and 𝛼. This measurement, however, might not reach the very low uncertainty
obtained from the atomic physics data.
We conclude this section with a historical note. In the previous SI, the defini-

tion of the ampere fixed the value of 𝜇0 to exactly 4π× 10−7 Hm−1 according to
Faraday’s law (see Section 2.2). An experimental determination of the
fine-structure constant then determined the von Klitzing constant and
vice versa [1]. Since the speed of light in vacuum, c, already was an exact constant
in the previous SI, the electric constant 𝜀0 also had an exact value with zero
uncertainty. This SI value could be used to realize the farad with a calculable
capacitor in the previous SI. At the day of the redefinition of the SI in 2019, 𝜇0
and 𝜀0 kept their values but acquired a relative uncertainty given by the relative
uncertainty of the fine-structure constant 𝛼 [69]. In the present SI, the values
and the relative uncertainty of 𝜇0, 𝜀0, and 𝛼 may slightly change in forthcoming
adjustments of the fundamental constants. At any time, however, very precise SI
values of 𝜇0, 𝜀0, and 𝛼 can be obtained from the most up-to-date adjustment of
the fundamental constants.

5.5 Graphene for Resistance Metrology

Quantum Hall resistance standards made from GaAs/AlGaAs heterostructures
have a tremendous impact on electrical metrology in the present SI since they
can be used to realize the SI ohm and the SI farad. However, their application
is restricted to highly specialized users mostly working at national metrology
institutes. The wider usage of these quantum Hall standards is impeded by the
requirement to operate them at low temperatures and high magnetic fields. Typ-
ical values are approximately 1K and 10T, determined by the material proper-
ties of GaAs structures. This choice of values ensures that the energy splitting
between adjacent Landau levels is sufficiently larger than the thermal energy kT
(k Boltzmann constant), which is a prerequisite for precise resistance quantiza-
tion.
In 2004, a new material became available to experimental physicists and engi-

neers: graphene is a two-dimensional carbon crystal with exceptional proper-
ties [36–39]. In 2010, Andre K. Geim and Konstantin S. Novoselov were awarded
the Nobel Prize in physics for the fabrication and their groundbreaking studies of
graphene.Thematerial properties of graphene offer the potential to use the QHE
formetrology at elevated temperatures and lowermagnetic fields and to facilitate
the use of quantum Hall resistance standards. Moreover, important tests of the
reproducibility and universality of the QHE can be performed with graphene, as
briefly mentioned in Section 5.4.1. In this section, we give a short overview of the
properties of graphene, its fabrication, and the QHE in graphene.

5.5.1 Basic Properties of Graphene

Graphene is the two-dimensional allotrope of carbon. It consists of one or
a few layers of carbon atoms and can be considered as the building block of
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three-dimensional graphite. Monolayer graphene is the most important type
of graphene for metrology and we will restrict the discussion to monolayer
graphene henceforth.
In a graphene layer, the carbon atoms occupy the sites of a hexagonal honey-

comb lattice due to their sp2 hybridization with strong in-plane σ bonds. The p
orbitals, which are unaffected by hybridization, are oriented perpendicularly to
the layer. Binding among these p orbitals results in the formation of a half-filled
π band [70].
A tight-binding description ofmonolayer graphene yields the details of its band

structure. The valence band and the conduction band intersect at six points in
the Brillouin zone, the so-called Dirac points, which fall into two groups (K and
K ’) of three equivalent points [70, 71]. Thus, graphene is a semimetal with zero
band gap energy. Close to the Dirac points, the dispersion E(k) is linear in the
wavevector k [70, 71] rather than parabolic as in conventional semiconductors,
giving rise to a vanishing effective mass of the electrons. The linear dispersion is
similar to the dispersion of relativistic particles with zero rest mass, and the elec-
trons are described by the Dirac equation around the Dirac points. In undoped
graphene, the Fermi energy is located at the energy where the valence and con-
duction bands intersect. Appropriate doping or applying an electric field gener-
ates a two-dimensional electron gas of almost massless electrons.
For parabolic bands, small effective electron masses result in a large Landau

level splitting, as seen from Eqs. (5.2) and (5.3). Even though graphene has a dif-
ferent band structure, this simple consideration already suggests that graphene
has favorable properties for the application of theQHE.TheDirac equation yields
the following relation for the energy of the electron Landau levels if a magnetic
field B is applied normal to the graphene layer [71]:

ELL = vF
√
2ℏeBlC (5.29)

In this equation, vF is the Fermi velocity, which is approximately 106 m/s in
graphene [38], and lC an integer (lC = 0, 1, 2, …). In contrast to semiconductors
with parabolic bands, the Landau levels are not equally spaced in energy and their
energies scale with the square root of themagnetic field, rather thanwith the field
itself.
The square root dependence favors a larger Landau level splitting at lower

fields. Figure 5.14 shows the energy splitting between the two lowest Landau
levels, ΔELL, normalized to the thermal energy, kT , versus the magnetic field for
graphene and GaAs at different temperatures. The plotted quantity indicates
whether a highly reproducible QHE can be expected. Routine operation condi-
tions of GaAs quantum Hall resistors of 10T and 1.4K result in ΔELL/kT = 150.
The same ratio can be obtained, for example, at 2 T and 4.2K using graphene.
Even higher temperatures should be feasible though at the expense of higher
fields, as indicated by the graphene curve for 10K.
In Section 5.5.3, we discuss the operating conditions, under which highly

accurate quantized resistance values can be observed experimentally. A compre-
hensive description of the electronic properties of graphene can be found, for
example, in Refs. [70–72].
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Figure 5.14 Energy splitting
between the two lowest Landau
levels normalized to the thermal
energy versus magnetic field for
graphene (black lines) and GaAs
(gray line) at different
temperatures. The dashed box
marks an energy ratio of 150 as
obtained under routine operation
conditions of GaAs quantum Hall
resistors of 10 T and 1.4 K. Source:
Courtesy of F. Ahlers, PTB.
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5.5.2 Fabrication of Graphene Monolayers for Resistance Metrology

Monolayer graphene can be produced by mechanical exfoliation from graphite.
This method was used in the groundbreaking early scientific work on graphene
[36–39]. Exfoliation, however, is not suited for routine fabrication and produces
layers, which are rarely larger than several 10 μm. The small layer width results
in a small breakdown current of the QHE [73], which limits the measuring cur-
rent and, in turn, the uncertainty of aQHEmeasurement.Therefore, considerably
larger graphene layers and more reproducible fabrication methods are required
for quantum Hall metrology.
Larger graphene layers can be grown by chemical vapor deposition (CVD)

on metallic surfaces [74], which act as catalyst for the decomposition of carbon
hydrides. For magneto-transport experiments, the graphene layer needs to be
lifted off the metallic substrate and transferred to a nonconducting substrate.
This transfer is a delicate procedure, which can degrade the quality of the
graphene layer.Therefore, most of the more recent QHE work in metrology used
graphene monolayers grown by high-temperature sublimation of silicon carbide
(SiC). These layers grow directly on a nonconductive substrate. Moreover, CVD
growth on SiC has yielded graphene monolayers, which proved to be well suited
for metrology [35, 75].
Epitaxial growth of graphene by the silicon carbide sublimation method

mostly employs hexagonal polytypes of SiC, namely, 4H-SiC or 6H-SiC, which
provide a well-suited template for the hexagonal graphene layer. Upon heating
to temperatures above 1000 ∘C, the silicon sublimes and a thin carbon layer
is formed [76]. The detailed properties of this layer, e.g. the number of atomic
layers and their quality, depend on a variety of parameters and conditions. For
the growth of monolayer graphene, the silicon-terminated surface of SiC is used
[71]. The graphene monolayer grows on top of a carbon buffer layer, which is
covalently bonded to the SiC substrate [77]. Growth in an argon atmosphere of
approximately 1 bar slows down the sublimation of silicon, allowing the use of
higher growth temperatures up to 2000 ∘C [78, 79]. The increased temperature
increases the mobility of the carbon atoms on the surface, resulting in larger
uniform graphene layers [78, 79]. The sublimation rate can also be controlled by
arranging two SiC substrates face to face [80].
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Thegraphene layers grown by the sublimation of SiC are not perfectly flat. Dur-
ing annealing, restructuring of the SiC surface results in monolayer graphene
terraces at different heights separated by step edges [79, 81].The step edges can be
as high as 10 nm [81]. Along high step edges, bilayer graphene nucleates [79, 81],
which can give rise to anisotropicmagnetotransport and deviations from the per-
fect quantization of the Hall resistance [81–83].
Therefore, measures to prevent the formation of high step edges need to be

taken. Ref. [84] has shown that reducing the misorientation of the SiC substrate
reduces the step height. Moreover, the supply of additional carbon from a poly-
mer adsorbate improves the high-temperature sublimation growth of monolayer
graphene [85]. The additional carbon supports the growth of the buffer layer,
which stabilizes the SiC surface. As a result, bilayer-free graphene monolayers
are obtained withmaximum step heights of only 0.75 nm, corresponding to three
layers of SiC [85]. The uniform graphene monolayers can extend over millimeter
distances and are very well suited for quantum Hall metrology [85]. Figure 5.15
shows an atomic force microscope image of such a bilayer-free graphene mono-
layer together with a Raman image. Raman spectra can be used to distinguish
monolayer graphene from bilayer graphene and the carbon buffer layer [86].
In metrology, it is often intended to perform QHE measurements close to the

smallest possible integer filling factor and at lowmagnetic fields up to 5T. To this
end, the electron density in the graphene layers needs to be adjusted to match
the density of states for such a field range and filling factor (see the discussion
in Section 5.3.2 and Eq. (5.10)). The suitable electron density is on the order of
1011 cm−2.The electron density of monolayer graphene grown by the sublimation
of SiC is usually much higher, namely, on the order of 1012–1013 cm−2 [71]. The
strong intrinsic doping is attributed to donor states in the carbon buffer layer
[71]. To reduce the electron density, an electric field can be applied to a gate
structure fabricated on top of the graphene monolayer. However, this approach
requires additional fabrication steps, which may damage the graphene layer, and
suffers from an intrinsic disadvantage that the gate voltage needs to be applied
permanently to keep the electron density stable. Therefore, photochemical gat-
ing is often used to control the electron density [87]. A polymer spacer layer and
a photosensitive resist layer are deposited on the graphene. Upon activation by
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Figure 5.15 Atomic force microscope (left) and Raman (right) images of monolayer graphene
grown by polymer-assisted sublimation of SiC. The analysis of the height data of the
30× 30 μm2 atomic force microscope image shows that the maximum step height is 0.75 nm.
The 30× 30 μm2 Raman image depicts the full width at half maximum (FWHM) of the 2D peak,
which is a fingerprint of graphene. The FWHM has a mean of 33 cm−1 and varies only slightly
over the image, proving the absence of bilayer patches [86]. Source: Courtesy of K. Pierz, PTB.
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ultraviolet (UV) radiation, acceptor states form in the photosensitive resist.These
acceptors effectively reduce the electron density, which is reported to remain
constant for several months [71]. The effect of the UV radiation can be undone
by thermal annealing, and the high electron density can be recovered. The elec-
tron mobility remains in the range of 103–104 cm2 V−1 s−1, well suited for QHE
measurements of graphene [71].Other gatingmethods use polymer coatings sub-
jected to corona discharge [88] or a treatment of the graphene layer with aqua
regia [89].

5.5.3 Quantum Hall Effect in Monolayer Graphene

The QHE in graphene monolayers impacts science and metrology in various
ways. From a scientific perspective, the QHE serves as an experimental finger-
print that the layer under study is indeed a graphene monolayer with massless
Dirac electrons [38, 39]. In metrology, the QHE in monolayer graphene testifies
to the high reproducibility and universality of theQHE [33–35, 90]. Furthermore,
graphene offers the potential for more practical quantum Hall standards, which
can be operated under relaxed conditions.
Monolayer graphene exhibits a so-called half-integer QHE [38, 39, 71]:

Rxy(i) =
h
4e2

1
(i + 1∕2)

(5.30)

As in Section 5.3, i is the integer number of Landau levels that are completely
filled with electrons. The dependence on (i + 1∕2)−1, rather than on i−1 as in
conventional semiconductors, is the consequence of the Landau levelELL(lC = 0)
at zero energy where the valence and the conduction bands intersect [71]. This
Landau level is equally shared by electrons and holes and contains half as many
electrons as the higher electron Landau levels. The fourfold degeneracy results
from the two states of the electron spin (up and down) and the two groups of
Dirac points (K and K ’). Equation (5.30) predicts plateaus of the Hall resistance
with values RK/2, RK/6, RK/10, and so on. The experimental data in Figure 5.16
confirms this prediction. The measurement was performed on a 100× 400 μm2

wide monolayer graphene Hall bar at T = 1.3 K. Besides the Hall resistance Rxy,
the longitudinal resistance Rxx is shown, which is seen to vanish over the field
ranges of the QHE plateaus, as expected.
Since the band structure of monolayer graphene differs considerably from

that of conventional semiconductors, graphene provides a perfect arena to
test the reproducibility and universality of the QHE experimentally. Quantum
Hall resistance values in exfoliated graphene were found to agree with those
of GaAs/AlGaAs heterostructures within an uncertainty of 6 parts in 109 [90].
Quantum Hall measurements of GaAs/AlGaAs heterostructures and graphene
grown by the sublimation of SiC were found to agree within an uncertainty
slightly below 9 parts in 1011 [33, 34]. Agreement within an uncertainty of 8.2
parts in 1011 was reported for graphene produced by CVD growth on SiC [35].
These results convincingly corroborate the high reproducibility and universality
of the QHE.
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Figure 5.16 Experimentally determined Hall resistance Rxy (black, left scale) and longitudinal
resistance Rxx (gray, right scale) as a function of the magnetic flux density of a 100× 400 μm2

monolayer graphene Hall bar at a temperature T = 1.3 K (measuring current 1 μA). The
graphene was grown by the silicon carbide sublimation method and the electron density was
adjusted to 6.94× 1011 cm−2. Some plateaus of the Hall resistance are indicated. Source:
Courtesy of F. Ahlers, PTB.

The reproducibility tests were performed over long measuring times and at
temperatures and magnetic fields similar to those used to operate GaAs quan-
tum Hall resistance standards. However, the QHE in graphene can also provide
quantized resistance values with sufficiently low uncertainty under relaxed con-
ditions, that is, if the magnetic field is lowered and/or the operating temperature
is raised. To this end, the magnetic field, operating temperature, and measuring
current need to be chosen carefully to balance counteracting effects.
As the operating temperature is raised, themagnetic field needs to be increased,

as already suggested by Figure 5.14. For example, a field of 29T was applied to
observe the QHE at room temperature [40]. A measuring current in the 10-μA
range is required to ensure a sufficiently large signal-to-noise ratio of the QHE
measurement and, in turn, sufficiently low uncertainty. The critical current, at
which the breakdown of the QHE occurs, needs to be larger than this measuring
current. Breakdown is of minor concern in graphene layers with electron den-
sities optimized for QHE measurements at large magnetic fields. For example,
the critical current density in graphene is several A/m at a field of 7T [73] and
even increases to several tens of A/m for fields well above 10T [73].These critical
current densities are larger than those of GaAs quantumHall resistors, which are
typically 1A/m [43]. Yet, the critical current density decreases below that of GaAs
in graphene layers optimized for QHE measurements at fields of 5T and below
[91]. Thus, a careful choice of magnetic field, measuring current, and layer width
is required. Moreover, as the temperature is raised, the critical current decreases
for all magnetic fields [73].
Despite these constraints, quantum Hall resistance measurements with an

uncertainty of 10−9 are reported at 5T and 5K in Ref. [35]. A measuring current
of 50 μA was applied using graphene grown by CVD on SiC [35]. With graphene
grown by the sublimation of SiC, quantum Hall resistance measurements
with metrological accuracy (parts per billion range) have been performed
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at a temperature of around 3.8 K and magnetic fields below 5T in a small
cryogen-free system [92]. These results are important steps toward a more
practical quantum Hall resistance standard.
Monolayer graphene also holds promise for quantum Hall impedance stan-

dards. Precision measurements of the quantized Hall resistance at kilohertz
frequencies showed that the AC QHE plateaus were flatter than those in
unshielded GaAs quantum Hall devices [93]. Furthermore, the graphene AC
QHE data showed a smaller deviation from the quantized value [93, 94]. Con-
sidering that capacitive losses are unavoidable in the AC QHE regime [66, 67],
these findings are attributed to the presence of positive and negative capacitive
contributions with different dependence on the sample size [93]. The positive
and negative contributions can partially cancel in graphene devices with sizes
that are smaller than those of GaAs quantum Hall devices [93]. Of course, the
double-shielding technique [67], which is described in Section 5.4.4, can also be
used with graphene devices to further improve their performance as quantum
Hall impedance standards.
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6

Single-Charge Transfer Devices and the SI Ampere

The paradigm of quantum metrology is the manipulation and counting of single
quanta to determine the value of macroscopic physical quantities based on fun-
damental constants. This concept becomes particularly obvious considering the
ampere, base unit of electric current, in the present SI. The ampere is linked to
the elementary charge e, which is one of the seven defining constants of the SI
(see Section 2.2). A straightforward approach to realize the SI ampere is to trans-
fer single charges through a conductor in a controlled way. Single-charge transfer
entails the controlled manipulation of single electrons and single Cooper pairs in
normal conductors and superconductors, respectively.
The SI ampere is realized if single charges are transferred in a clocked manner

at a frequency f . This approach yields a quantized current

I = nef = ne
T

(6.1)

where n is the number of elementary charges transferred per cycle. Equation (6.1)
can be viewed as the textbook definition of the current being the charge trans-
ferred through a conductor cross section per time interval T = 1/f . In this sense,
quantized current sources provide the most direct realization of the SI ampere.
For Eq. (6.1) to be applicable, single charges must be isolated and transferred

one by one through a conductor. The basic physics of single-charge transport
will be discussed in Section 6.1. Section 6.2 gives an overview of quantized cur-
rent sources made of normal metals, superconductors, and semiconductors.The
basics of superconductors and semiconductors are summarized in Chapters 4
and 5, respectively. Detailed reviews of single-charge transfer can be found, for
example, in Refs. [1–4].
The realization of the SI ampere is treated in Section 6.3. Besides realizations

using single-charge transfer, we discuss realizations based on the SI volt, SI
ohm, and the application of Ohm’s law. In these indirect ampere realizations,
the Josephson effect (see Chapter 4) and the quantum Hall effect (QHE) (see
Chapter 5) are used to link the SI volt and SI ohm to e and the Planck constant h.
An important application of quantum current standards is a fundamental

consistency test of electrical quantum metrology, which is known as the quan-
tum metrology triangle (QMT), first suggested in [5]. The QMT is described in
Section 6.4. The consistency test aims at verifying the relation of the Josephson
effect, the QHE, and single-charge transport to the defining constants e and h.

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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6.1 Basic Physics of Single-Electron Transport

This section discusses the basics of single-charge transfer in normal metal cir-
cuits. Single-electron transport (SET) rests on two basic physical phenomena,
namely, the tunneling of electrons through potential barriers and the so-called
Coulomb blockade. Coulomb blockade occurs in small structures with a large
capacitive charging energy. These phenomena are also the basis of single-charge
transfer in semiconductors and superconductors.

6.1.1 Single-Electron Tunneling

Electrons in metals are delocalized. Therefore, the charge on a capacitor C con-
nected to a voltage source U by metallic wires can take any value Q = CU even
though the electron charge (−e) is quantized. This fact, illustrated in Figure 6.1a,
raises the question of how single electrons can be manipulated in metals. A first
clue is obtained noting that a capacitor plate will carry a fixed number of elec-
trons and, thus, quantized charge if one of the wires is broken.This situation can
be realized by an open switch as shown in Figure 6.1b. Opening of the switch
results in localization of the electrons on the capacitor. Of course, breaking the
wire prohibits any further adjustment of the number of electrons on the capacitor
and is not a practical approach. Yet, localization can also be obtained replac-
ing the switch by a tunnel element with sufficiently large resistance. In its sim-
plest form, a tunnel element consists of two metallic contacts separated by a
sufficiently thin insulating layer, very similar to the Josephson tunnel junction
described in Chapter 4. The tunnel element (with resistance RT and capacitance
CT) and the capacitor plate form a so-called single-electron quantum box, as
shown in Figure 6.1c.
A single-electron quantum box allows single-electron charges to be manipu-

lated and can serve as a building block of SET devices if two fundamental con-
ditions are fulfilled. First, the charging energy required to put an extra electron
on the capacitor, E1e

C , must be considerably larger than the thermal energy, kT

U C Q

U C

U
C

(a)

(b)

(c)

n (−e)

n (−e)

RT, CT

Figure 6.1 Comparison of a closed metallic circuit without
charge quantization (a), an open metallic circuit with a
fixed number of quantized charges n on the capacitor (b),
and a single-electron quantum box (dashed box in part c)
allowing the manipulation of single electrons. Source:
Göbel and Siegner 2015 [6]. Reproduced with permission of
John Wiley & Sons.
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(k Boltzmann constant, T temperature), to prevent random thermal transfer of
electrons:

E1e
C = e2

2CΣ
≫ kT (6.2)

where CΣ is the total capacitance (CΣ = C +CT). Relation (6.2) shows that reli-
able SET operation requires very small capacitances (0.1–1 fF), corresponding to
structures with nanometer dimensions. Moreover, particularly for metrological
applications, the temperature must be low (often in the millikelvin range).
The second condition relates to quantum fluctuations whose energy, EQF, must

be much smaller than E1e
C . According to the Heisenberg uncertainty relation,

EQF = ℏ/𝜏 , where 𝜏 is the RC time constant, 𝜏 = RTCΣ. Thus, we obtain as second
condition

RT ≫
1
π
h
e2

≈
RK

4
, (6.3)

where RK is the von Klitzing constant. Relation (6.3) expresses that the tunnel
resistance must be large enough to localize electrons sufficiently well in the
single-electron quantum box.

6.1.2 Coulomb Blockade in SET Transistors

Single-electron manipulation can be achieved using a so-called SET transistor if
conditions (6.2) and (6.3) are fulfilled. As shown in Figure 6.2, an SET transistor is
a three-terminal device and consists of two single-electron quantum boxes con-
nected such that a small charge island is formed between the tunnel elements.
The island is capacitively coupled to a gate voltage UG via the gate capacitance
CG. Additionally, a source–drain voltageUSD can be applied across the SET tran-
sistor (shown as being split symmetrically in Figure 6.2). With SET transistors,
clear signatures of SET phenomena were observed as early as 1987 [7, 8].
To understand the operation of an SET transistor, its different energy terms

and, in turn, its chemical potential must be considered. The total electrostatic
energy of the charge island is given by

Eelst =
(−enexc + Q0)2

2CΣ
(6.4)

where nexc = N −N0 is the number of excess electrons on the island and N the
total number of electrons.N0 is the number of electrons in equilibrium, that is, for
USD = 0 andUG = 0, which compensate for the positive background charge of the
island.The gate electrode induces a continuously variable chargeQ0 =CGUG. For

Figure 6.2 Equivalent circuit of an SET transistor.
The charge island is shown as black dot. Source:
Göbel and Siegner 2015 [6]. Reproduced with
permission of John Wiley & Sons.

RT,CT RT,CT

−USD/2 USD/2
CG

UG



126 6 Single-Charge Transfer Devices and the SI Ampere

noninteracting electrons at zero temperature, the total electronic energy of the
charge island, E(N), is obtained if the single-particle energies 𝜀i of allN electrons
are added to the electrostatic energy:

E(N) =
N∑
i=1
𝜀i +

(−enexc + CGUG)2

2CΣ
(6.5)

The important quantity for the study of transport phenomena is the chemical
potential 𝜇, which is, by definition, the energy required to put an extra electron in
a system.The chemical potential reflects the mere change of the particle number
(to also be considered for uncharged particles) as well as changes in the electro-
static energy caused thereof (to be considered only for charged particles). If the
chemical potential is constant, no net transfer of particles occurs, and the current
is zero.
The chemical potential of the charge island, 𝜇C, is calculated subtracting the

total electronic energy of an island with N − 1 electrons from the corresponding
term for N electrons:

𝜇C(N) ≡ E(N) − E(N − 1) = 𝜀N +
(
nexc − 1∕2

)
e2

CΣ
− e

CG

CΣ
UG (6.6)

The sum of the last two terms on the right-hand side is the electrostatic potential,
−e𝜙N , while the first term is the electrochemical potential, 𝜇elch(N). The electro-
static potential, −e𝜙N , can be adjusted by the gate voltage UG. Note that 𝜇C(N),
𝜇elch(N), and −e𝜙N have the dimension of an energy even though they are con-
ventionally referred to as potentials.
If the number of electrons on the charge island changes by one at a constant

gate voltage, the chemical potential changes by Δ𝜇C. We obtain from Eq. (6.6)

Δ𝜇C = 𝜀N+1 − 𝜀N + e2
CΣ

(6.7)

For a small metallic island with small capacitance, we have 𝜀N+1 − 𝜀N ≪ e2/CΣ.
Thus, the chemical potential levels of the island are separated by the Coulomb
energy e2/CΣ.
The chemical potential across a metallic SET transistor is plotted in Figure 6.3.

The chemical potential of the island is shown for occupation with N − 1, N , or
N + 1 electrons. Furthermore, 𝜇L and 𝜇R are the chemical potential of the elec-
tron source (left) and electron drain (right), respectively, which are related to the
source–drain voltage according to

𝜇L − 𝜇R = eUSD (6.8)

In Figure 6.3, 𝜇L −𝜇R is assumed to be smaller than the Coulomb energy e2/CΣ.
Without loss of generality, we can further assume that the charge island is occu-
pied by N electrons. Figure 6.3 then illustrates the so-called Coulomb blockade,
that is, the suppression of electron transfer due to the Coulomb energy.The figure
shows that electrons cannot move from the source lead to the island since 𝜇L is
located below 𝜇C(N + 1). Similarly, electron flow from the island to the drain lead
is inhibited since 𝜇C(N) is located below 𝜇R.Thus, the number of electrons on the
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Figure 6.3 Chemical potential across a
metallic SET transistor for a fixed gate voltage
UG and a small source–drain voltage USD. The
tunnel barriers (gray) separate the metallic
wires on the left (electron source) and right
(electron drain) from the charge island. The
chemical potential of the source and drain
leads is 𝜇L and 𝜇R, respectively. The chemical
potential of the island is shown for occupation
with N− 1, N, or N+ 1 electrons. Source: Göbel
and Siegner 2015 [6]. Reproduced with
permission of John Wiley & Sons.
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island remains constant at N and no current flows. Of course, for this argument
to be valid, we assume that kT is much smaller than the Coulomb energy.
The Coulomb blockade can be lifted if the gate voltage UG (and thus −e𝜙N ) is

adjusted such that

𝜇L > 𝜇C(N + 1) > 𝜇R (6.9)

Under this condition, electrons can tunnel from the source lead to the island
and further to the drain lead. The electrons are transferred one by one, that is,
single-electron transport occurs. The simultaneous transfer of two or more elec-
trons is not possible since 𝜇C(N + 2), 𝜇C(N + 3), and so on are still located well
above 𝜇L. Consequently, the number of electrons on the charge island oscillates
between N and N + 1.
The preceding discussion has yielded the following insight, which is the basis

of clocked single-charge transfer and quantized current sources:

• In an SET transistor, electron transfer occurs either one by one or is inhibited
by the Coulomb blockade (for |eUSD| = |𝜇L −𝜇R| < e2/CΣ).

• Switching between these two states can be achieved by the adjustment of the
gate voltage.

6.1.3 Coulomb Blockade Oscillations and Single-Electron Detection

Let us again assume that the source–drain voltage across the SET transistor is
small so that the relation |eUSD|= |𝜇L −𝜇R|< e2/CΣ holds. Under this condition,
the so-called Coulomb blockade oscillations occur if the gate voltage is contin-
uously tuned. The tuning causes the state of the SET transistor to periodically
change between the Coulomb blockade and single-electron transport. The dis-
cussion of the physics presented in Section 6.1.2 applies to each period of the
Coulomb blockade oscillation. Only the electron numbers change from period
to period. If one period involves the electron numbers N and N + 1, the next
period involves N + 1, N + 2, and so on. This feature is illustrated in the lower
part of Figure 6.4, where the number of excess electrons on the charge island,
nexc, is plotted versus the gate voltage UG. The UG axis is scaled in units of e/CG,
which is the period length of theCoulomb blockade oscillation.Theperiod length
is determined by Eq. (6.6), which shows that a gate voltage change of e/CG shifts
the chemical potential of the charge island by e2/CΣ.Theupper part of the figure is
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Figure 6.4 Schematic representation of the
source–drain current ISD (top) and the number
of excess electrons nexc on the charge island
(bottom) versus gate voltage UG. The dot marks
the operating point of an SET electrometer.
Source: Göbel and Siegner 2015 [6].
Reproduced with permission of John Wiley &
Sons.

a schematic representation of the source–drain current, ISD, versus gate voltage.
The current shows peaks with steep slopes (whenever the number of electrons
on the island oscillates corresponding to the transport of single electrons). This
feature is used in applications of SET transistors as electrometers. For charge
detection, a sensor electrode is coupled to the charge island of an SET transistor
and the operating point is chosen on the flank of a current peak. SET electrome-
ters reach an unprecedented charge resolution on the order of 10−5e∕

√
Hz.

Coulomb blockade does not occur for larger source–drain voltages, that is,
for |eUSD| = |𝜇L −𝜇R|≥ e2/CΣ. Referring to Figure 6.3, the reason is obvious.
For larger source–drain voltages, 𝜇L is located above 𝜇C(N + 1) or 𝜇R lies below
𝜇C(N). Either condition precludes the Coulomb blockade.The complete dynam-
ics of the SET transistor can be concisely summarized by the stability diagram of
Figure 6.5, in which the number of excess electrons on the charge island is plotted
in the plane of the gate voltage and the source–drain voltage.
We finally note that the stability diagram also illustrates the behavior of an SET

transistor if USD is tuned at a constant gate voltage UG ≠ (i+ 1/2)e/CG (i inte-
ger). For USD≪ 0, negative current flow is observed, followed by the Coulomb
blockade around USD = 0 and positive current for USD≫ 0. This behavior is also
shown by the experimental data of Figure 6.9. It is the basis of Coulomb blockade
thermometry discussed in Section 8.1.6
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Figure 6.5 Stability diagram of an SET
transistor: number of excess electrons nexc on
the charge island versus gate voltage UG and
source–drain voltage USD. In the gray regions,
Coulomb blockade occurs and nexc has a
constant value as indicated. In the white
regions, nexc oscillates between the indicated
values corresponding to nonzero current flow.
Source: Göbel and Siegner 2015 [6].
Reproduced with permission of John Wiley &
Sons.
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Figure 6.6 SET pump
consisting of two charge
islands and three tunnel
junctions (a). The chemical
potentials of the islands are
controlled by periodic gate
voltages (b). Source: Göbel
and Siegner 2015 [6].
Reproduced with permission
of John Wiley & Sons.
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6.1.4 Clocked Single-Electron Transfer

Clocked single-electron transfer according to Eq. (6.1) can be realized with
single-electron quantum boxes. However, a single normal-metal SET transistor
is not sufficient for this purpose. This conclusion can be understood recalling
that in the on-state, when the Coulomb blockade is lifted, the source–drain
current relies on electron tunneling, which is a stochastic process. Consequently,
one cannot control the exact number of electrons that tunnel from source to
drain in a given time interval, even though the electrons tunnel one by one.
Controlled clocked transfer of single electrons is feasible if two (or more) SET

transistors are connected in series. Figure 6.6 shows a so-called SET pump with
two charge islands. The chemical potential of the islands can be individually
adjusted by periodic gate voltagesUG1 andUG2.The charge islands are separated
from each other and from the source and drain leads by three tunnel junctions.
The lower part of the figures shows the periodic gate voltages, which are
phase-shifted with respect to each other. The phase shift enables the following
cycle, in which a single electron is transferred from source to drain. First, the
chemical potential of island 1 is lowered by an increase inUG1 so that an electron
can tunnel onto the island from the source. Subsequently, the chemical potential
of island 1 is raised again (by lowering UG1), while the chemical potential of
island 2 is lowered by the increase in UG2. In this phase, the electron tunnels
from island 1 to island 2. In the last part of the cycle, the decrease in UG2 raises
the chemical potential of island 2 so that the electron is emitted to the drain
lead. This clocked single-electron transfer does not require the application of a
source–drain bias voltage (in fact, it is even feasible against a small opposing
bias). Therefore, the device is referred to as the SET pump as opposed to SET
turnstile devices whose operation relies on a source–drain bias.
The dynamics of SET pumps can be analyzed with a stability diagram, which

shows the number of excess electrons on charge island 1 and 2, (n1, n2), in the
plane of the gate voltages UG1 and UG2. Figure 6.7 is a schematic representa-
tion of the stability diagram of the SET pump of Figure 6.6. Single-electron
pumping is achieved if the gate voltages are varied such that a triple point is
encircled. As shown in the figure, counterclockwise rotation gives rise to clocked
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Figure 6.7 Schematic representation of the
stability diagram of an SET pump that is driven
by two gate voltages UG1 and UG2. Shown is the
number of excess electrons (n1, n2) on the
charge islands 1 and 2. The closed trajectory
corresponds to single-electron pumping from
source to drain. Source: Göbel and Siegner
2015 [6]. Reproduced with permission of John
Wiley & Sons.

single-electron transfer from the source to island 1, island 2, and further to the
drain.The stability diagram illustrates in an intuitive way that the direction of the
single-electron current is reversed for clockwise rotation. Thus, single-electron
pumping is a reversible process whose direction is determined by the relative
phase between the gate voltages.
The first metallic SET pump was demonstrated in 1991 [9], and, since then,

metallic SET pumps have considerably impacted metrology.Therefore, the prop-
erties of metallic SET pumps are discussed in Section 6.2.1.
Single-electron transport through a metallic SET turnstile device was demon-

strated in 1990 [10]. The device consisted of four tunnel junctions separated by
three charge islands. A single alternating gate voltage was applied to the cen-
tral island. To realize single-electron transport, a source–drain voltage had to be
applied. This property classifies the device as turnstile, as mentioned earlier. So
far, SET turnstiles made of normal metals have not reached the accuracy of SET
pumps. Therefore, with our focus being on metrology, we will not discuss them
in more detail. The subject of turnstiles, however, will resurface in the context
of semiconducting and superconducting quantized current sources in Sections
6.2.2 and 6.2.3, respectively.

6.2 Quantized Current Sources

In this section, we discuss different implementations of clocked single-electron
transport and focus on the performance of quantized current sources with
respect to their benchmark parameters for the realization of the SI ampere:
(i) the clock frequency, which determines the magnitude of the quantized
current according to Eq. (6.1) and (ii) the accuracy with which the quantized
current can be generated. The latter is not determined by the uncertainty of
the frequency, which can be 10−15 and better if derived from atomic clocks
(see Chapter 3). The accuracy of the quantized current is determined by the
transfer error. This quantity describes the difference between the number of
elementary charges that are actually transferred and the intended number n in
Eq. (6.1). Equation (6.1) describes a perfect source. The transfer error of a real
source can be expressed as |n− ⟨nS⟩|/n. Here, ⟨nS⟩ denotes the time-averaged
number of elementary charges transferred per cycle of the clock frequency f . If,
for example, two electrons are transferred instead of one in some cycles, ⟨nS⟩
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will be larger than n = 1 and the transfer error will be nonzero.The transfer error
and the clock frequency are often interrelated so that a careful optimization of
the overall performance is required. A comprehensive overview of SET devices
is given in Ref. [4].

6.2.1 Metallic Single-Electron Pumps

Most metallic SET devices are made of aluminum since it has a stable native
oxide with good dielectric properties, which can form insulating tunnel barriers.
A scanning electron microscopy (SEM) image of an Al/Al oxide SET transistor
is shown in Figure 6.8. For SET operation according to the concept outlined in
Section 6.1, a weak magnetic field is applied to suppress superconductivity in
aluminum. The application of the field yields a normal-metal/insulator system.
Pronounced Coulomb blockade can be achieved in Al/Al oxide SET transistors,
as illustrated in Figure 6.9.
The clock frequency of metallic SET pumps is determined by the time con-

stant 𝜏 = RTCΣ of the tunneling process. This time constant cannot easily be
reduced since the relation RT≫ RK must hold and the reduction of CΣ requires
the fabrication of extremely fine nanostructures.The clock frequency must fulfill
the condition f ≪ (RTCΣ)−1. Otherwise, tunneling events are missed due to the
stochastic nature of tunneling. Lowering the frequency increases the probabil-
ity that tunneling occurs in each cycle of the drive voltage. For high-accuracy
single-electron pumping, the clock frequency must be limited to the 10MHz
range, corresponding to picoampere currents.

500 nm

L = SE1
500 nm
EHT = 20.0 KV WD = 14 mm MAG = X 50.0 K PHOTO = 0

Al/Al-oxide

Gate

Island

Tunnel junctions

Figure 6.8 SEM image of an Al/AlOx/Al/AlOx/Al SET transistor. Each structure is seen twice due
to the specific fabrication procedure (double-angle shadow evaporation [11, 12]). Source:
Courtesy of PTB.
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Figure 6.9 Source–drain
current versus source–drain
voltage of an
Al/AlOx/Al/AlOx/Al SET
transistor measured at a
temperature of 25mK and a
magnetic field of 1 T. The gate
voltage was chosen to
maximize the Coulomb
blockade and a “Coulomb
gap” of 7meV is observed.
Source: Courtesy of H.
Scherer, PTB.

Other types of transfer errors can occur even at sufficiently low clock
frequencies. A major source of error is higher-order tunneling, also named
cotunneling [13, 14]. Cotunneling refers to the joint tunneling of two or more
electrons through an SET transistor or SET pump in either direction. As an
example, consider an SET transistor with one charge island and two tunnel
barriers in the Coulomb blockade state when single-electron tunneling is ener-
getically forbidden. One type of cotunneling process consists of the simultaneous
transfer of one electron from the source lead to the island and another one from
the island to the drain. This process leaves the charge on the island unchanged
and does not violate energy conservation, but effectively transfers an electron to
the drain. The transfer process can be viewed as quantum tunneling through a
potential barrier resulting from the Coulomb energy. Obviously, this cotunneling
process gives rise to a transfer error. The probability of cotunneling decreases
with the increasing number of tunnel junctions in SET pumps [15].
Besides cotunneling, photon-assisted tunneling needs to be considered when

analyzing the accuracy ofmetallic SET pumps [16, 17]. In this process, absorption
of photons provides the energy required to lift an electron over the Coulomb
barrier. The photon-assisted tunneling rate strongly depends on the shielding of
the SET device against electromagnetic radiation [18].
Since the accuracy can be enhanced by a larger number of tunnel junc-

tions, the National Institute of Standards and Technology (NIST) fabricated a
seven-junction SET pump and experimentally demonstrated a transfer error of
1.5 parts in 108 at a clock frequency of 5.05MHz [19]. The transfer error was
determined pumping single electrons on and off an additional charge island,
whose charge state was monitored by an SET electrometer (shuttle pumping).
The excellent result of Ref. [19] was achieved by complex technology, which
involves the synchronous tuning of six gate voltages. Despite the merits of
metallic SET pumps, these results also illustrate their main drawbacks. Their
clock frequency and current are limited, and a complex multiple-gate setup is
required to achieve low uncertainties.The latter issue is aggravated by long-term
stability problems due to uncontrolled background charges, which change the
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properties of metallic SET pumps during operation. The nature and dynamics of
the background charges are not yet completely understood.
An alternative way to suppress cotunneling using less tunnel junctions is to

embed the SET device in a high-impedance environment [20].The first so-called
R-pumpwith three tunnel junctions and 60 kΩ on-chip resistors in series with the
pump was demonstrated by the Physikalisch-Technische Bundesanstalt (PTB)
in 2001 [21]. Three-junction R-pumps have not reached metrological accuracy.
Therefore, five-junctionR-pumpswere developed,which achieved transfer errors
of a few parts in 108 as determined by shuttle pumping [22]. Seven-junction SET
pumps as well as five-junction R-pumps were used in fundamental consistency
tests of electrical quantummetrology, which are discussed in Section 6.4 [23, 24].

6.2.2 Semiconducting Quantized Current Sources

Clocked single-electron transport in semiconductor structures is governed by
the general principles that are outlined in Section 6.1 for metallic SET devices.
Similar to theirmetallic counterparts, semiconducting quantized current sources
are built from charge islands and tunnel barriers, sandwiched between a source
and drain reservoir. Different driving schemes can be realized, such as turnstile
or pumping operation.
Yet, there are two important aspects that distinguish semiconductor SET

devices from metallic ones. In semiconductors, the density of free electrons is
substantially smaller than in metals. The smaller density gives rise to a larger
de Broglie wavelength, which is of the same order as the size of the charge
island. Therefore, size quantization must be considered (see Section 5.1). The
quantization energy must then be added to the Coulomb energy e2/CΣ. The
result is a more complicated potential level structure compared to the equally
spaced levels of a metallic charge island.The charge island in semiconductor SET
devices should rather be viewed as a quantum dot, that is, a zero-dimensional
structure with an atom-like energy spectrum.
The other important difference concerns the tunnel barriers. In metallic SET

devices, the height and width of the tunnel barriers are fixed, being determined
by the material properties and the thickness of the insulating layer. In contrast,
the height and width of the tunnel barriers in semiconductors can be tuned by
external gate voltages. We discuss in this section that the tunability of the tun-
nel barriers is the key to the operation of semiconductor SET devices at higher
frequencies. A comprehensive review of quantized current sources with tunable
barriers can be found in Ref. [25].

6.2.2.1 GaAs-Based SET Devices
Most semiconductor quantized current sources have been fabricated either
from GaAs/AlGaAs or Si/SiO2. We first discuss GaAs/AlGaAs SET devices. The
fabrication of such devices starts with a high-mobility two-dimensional electron
gas (2DEG) in a GaAs/AlxGa1−xAs heterostructure. Further details about the
growth and the properties of GaAs/AlxGa1−xAs heterostructures can be found in
Section 5.2. To fabricate a quantum dot, metal gate electrodes can be deposited
on top of the heterostructure. The application of a negative voltage depletes the
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Figure 6.10 Schematic
layout of a GaAs/AlGaAs SET
pump. Typical parameters:
width of the
one-dimensional channel,
700 nm; gate width, 100 nm;
gate separation, 250 nm. An
AC and a DC voltage are
applied to the left gate, while
only a DC voltage is applied
to the right gate. Source:
Courtesy of A. Müller, PTB.

2DEG underneath the gate electrodes and creates potential barriers. A quantum
dot connected by tunnel barriers to a source and drain reservoir can be generated
using appropriately shaped electrodes. The first experimental demonstration of
clocked single-electron transfer in semiconductor structures was achieved with
a turnstile device fabricated with this method [26].
Alternatively, first a one-dimensional conducting channel is defined by etching,

which removes the 2DEG on either side of the channel. The channel is crossed
by metallic gate electrodes to define tunnel barriers and, in turn, a quantum dot
between the barriers. A schematic representation of such an SET device is shown
in Figure 6.10. Both an AC and a DC voltage are applied to the left gate electrode
(entrance gate). The potential of the exit gate on the right is adjusted by a DC
voltage only.
The SET device of Figure 6.10 is a nonadiabatic GaAs/AlGaAs SET pump [27].

Its operation principle is illustrated in Figure 6.11, which schematically depicts
the different phases of a pumping cycle. Shown is the potential along the con-
ducting channel for fixed DC gate voltages. A single AC voltage modulates the
entrance tunnel barrier. In (a), the entrance barrier is high and tunneling of elec-
trons from the source reservoir into the dot is inhibited. As the entrance barrier
is lowered and becomes more transparent, electrons tunnel into the quantum

(a) (b)

(c) (d)

Figure 6.11 Schematic
representation of the
pumping cycle of a
GaAs/AlGaAs SET pump.
Shown is the temporally
varying potential of the
quantum dot (red), the
energy levels of the dot
(yellow), and the Fermi level
(green). The transferred
electron is shown as the blue
dot. The different phases (a,
b, c, d) of the pumping cycle
are explained in the text.
Source: Courtesy of A. Müller,
PTB.
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dot if the dot potential levels are located below the source Fermi level (b). The
subsequent increase in the entrance barrier lifts the captured electrons above the
Fermi level (c). As the captured electrons gain energy, they face an increasingly
lower and more transparent exit barrier and, finally, tunnel out of the dot to the
drain reservoir (d). For sufficiently small structures and low temperatures, the
Coulomb blockade ensures that a small integer number of electrons are trans-
ferred per cycle. The integer number can be chosen by the adjustment of the DC
gate voltages. A single electron is usually transferred per cycle for high-accuracy
operation.Without going into details, we note that the parameters of the dynamic
quantum dot do not instantaneously follow the clock frequency if it is in the
megahertz to gigahertz range. This behavior classifies the pumping scheme as
nonadiabatic.The nonadiabatic behavior is important since in the adiabatic limit,
a directional current cannot be obtained applying a single periodic modulation
signal [28].
Figure 6.12 shows the current generated with a nonadiabatic GaAs/AlGaAs

SET pump as a function of the DC voltage applied to the exit gate. The entrance
tunnel barrier was modulated at a clock frequency of 200MHz and the tempera-
ture was 300mK. The observation of a pronounced current plateaus proves that
a quantized current has been generated.This current corresponds to the transfer
of one electron per cycle of the clock frequency (32 pA for f = 200MHz).
The uncertainty of the current measurement does not allow ameaningful value

of the transfer error to be obtained from the experimental data only. However, the
current–voltage characteristics can quantitatively be analyzed by a theoretical
model of the transport process to estimate the transfer error [29].The theoretical
model relates the width of the current plateau to the transfer error. The model
predicts a transfer error of 10−8 for the quantized current of Figure 6.12. This
result suggests that GaAs/AlGaAs SET pumps can achieve uncertainties as low as
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Figure 6.12 Current in units of ef as a function of the exit gate voltage. Clock frequency
f = 200MHz, temperature 300mK, zero magnetic field. Source: Courtesy of F. Hohls, PTB.
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those demonstrated with metallic SET pumps, yet at frequencies that are orders
of magnitude higher.
In the following,we review the development and performance ofGaAs/AlGaAs

SET pumps. Their impact on metrology is discussed in Section 6.3.2. All experi-
mental studies have in common that the GaAs/AlGaAs SET pumps are operated
at low temperatures in the 1K range and below. This temperature range ensures
that the thermal energy is sufficiently small and that thermal excitations are suf-
ficiently well suppressed.
In recent years, GaAs/AlGaAs SET pumps with a single AC gate voltage have

mostly been studied [27]. This pumping scheme considerably simplifies the
operation compared to schemes with two phase-shifted AC gate voltages [30].
GaAs-based SET pumps with a single AC gate voltage can generate accurately
quantized currents at zero magnetic field [25, 31]. As an example, reconsider
the data of Figure 6.12, which was obtained at zero magnetic field. Yet, the
accuracy of GaAs-based SET pumps can often be improved by the application
of a magnetic field [25, 32, 33]. This effect is not yet fully understood [25].
Nonetheless, applying a field of 14T, the quantized current of an etch-defined
GaAs SET pump was shown to agree with ef within a relative uncertainty of
1.2 parts in 106 at a clock frequency f = 0.95GHz [34]. The quantized current
was measured by comparison to a reference current, which was traceable to the
Josephson effect and the QHE [34]. The quoted uncertainty is the uncertainty of
the current measurement. The transfer error of the SET pump is smaller than
or equal to the uncertainty of the current measurement. Thus, accurate current
measuring techniques are required to exactly determine small transfer errors
of SET pumps based on current measurements. A more detailed discussion of
techniques for the traceable measurement of small currents can be found in
Section 6.3.1.
Gate-defined GaAs SET pumps were also studied [35] using the same current

measuring technique as in Ref. [34]. The quantized current was experimentally
found to agree with ef within an uncertainty of 1.4 parts in 106 at 0.95 GHz
and a field of 11T [35]. These results indicate that well-performing nonadiabatic
GaAs/AlGaAs SET pumps can be fabricated with different methods.
More information on the transfer error of nonadiabatic GaAs/AlGaAs SET

pumps is obtained by an improved current measuring technique. This technique
is known as ultrastable low-noise current amplifier (ULCA) [36]. It is discussed
in more detail in Section 6.3.1. Using an ULCA, the quantized current of a GaAs
SET pump was found to agree with ef within an uncertainty of 0.2 parts in 106
(at f = 545MHz and a magnetic field of 16T) [37]. The uncertainty could even
be improved to 0.16 parts in 106 (at 600MHz and 9.2 T) [38]. Thus, the transfer
error of these GaAs SET pumps is smaller than or equal to 0.16 parts in 106. In
Section 6.3.2, we discuss in more detail that these SET pumps realize the ampere
in the present SI with an uncertainty that outperforms that of the ampere
realization in the previous SI.
An important feature for the application of GaAs/AlGaAs SET pumps is their

robust operation. Robust operation implies that the SET pumps can be oper-
ated over a broad range of DC gate voltages and AC voltage amplitudes. Broad
operating margins of nonadiabatic single-gate GaAs/AlGaAs SET pumps were
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reported as early as 2008 [39]. More recently, robust operation of a gate-defined
GaAs/AlGaAs SET pump was observed at an uncertainty level of 1 part in 106 (at
500MHz and 13.5T) [40].The robust operation of an etch-definedGaAs/AlGaAs
SET pump was demonstrated at an uncertainty below 1 part in 106 [38].
We finally note that the single-gate pumping scheme paves the way to on-chip

integration of several components due to its reduced complexity. In Ref. [41], a
parallel circuit of three SET pumps was realized to increase the output current.
On-chip integration of a GaAs/AlGaAs SET pump and a quantum Hall resis-
tor was shown to yield an all-semiconductor source of quantized voltages [42].
Moreover, the integration of SET pumps and SET detectors can yield quantized
current sources with improved accuracy [43, 44]. More details on this topic are
given in Section 6.2.4.

6.2.2.2 Silicon-Based SET Devices
The operation principle of Si/SiO2-based SET devices resembles that of
GaAs/AlGaAs devices. The current through a narrow Si wire is controlled
by metal-oxide-semiconductor field-effect transistors (MOSFETs). In their
off-state, MOSFETs create opaque tunnel barriers and a quantum dot is formed
between the barriers. The transparency of the barriers can be increased if the
MOSFETs are switched to the on-state. SET pumping [45] and SET turnstile
operation were demonstrated [46] based on the tunable barrier concept. In
general, silicon technology allows very fine nanostructures to be fabricated, in
which the Coulomb energy is increased. Consequently, SET operation can be
observed at elevated temperatures on the order of 20K, which are substantially
higher than the operation temperatures of GaAs/AlGaAs devices.
In Ref. [45], SET pumping was demonstrated at 1MHz and a temperature of

25K. The transfer error was on the order of 1 part in 102. Soon after, turnstile
operation was achieved at 20K, producing a quantized current with a similar
transfer error, yet at a considerably higher frequency of 100MHz [46].With a sim-
ilar SiMOSFETdevice as inRef. [46], single-gate SETpumpingwas demonstrated
in Ref. [47]. In this work, the generation of a nanoampere quantized current was
achieved, pumping three electrons per cycle of the clock frequency of 2.3GHz.
The transfer error was estimated to be on the order of 1 part in 102. A lower
transfer error was reported for a quantized current generated with a device that
consisted of ametallic NiSi nanowire interrupted by two tunnel barriers [48].The
barriers were defined by Si MOSFETs and the device was fabricated by industrial
silicon-on-insulator (SOI) technology. A transfer error of the quantized current
on the order of 1 part in 103 was reported for operation at a clock frequency
of 650MHz and a temperature of 0.5 K [48]. Quantized currents with a transfer
error of a few parts in 105 could be demonstrated at a frequency of 500MHz with
an SET pump fabricated with silicon metal-oxide-semiconductor (MOS) tech-
nology [49]. The device was operated at a temperature of a few 100mK.
More recently, a Si SET pump was studied using a current measuring system

with an uncertainty slightly below 1 part in 106 [50]. The quantized current
was found to agree with ef within an uncertainty of 0.92 parts in 106 at a clock
frequency f = 1 GHz [50]. With an improved current measuring system, the
quantized current of a Si SET pump could be shown to agree with ef within an
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uncertainty of 0.27 parts in 106 at f = 1GHz [51] (more details on the current
measuring systems are discussed in Section 6.3.1). The transfer error of these
Si SET pumps is equal to or smaller than the quoted uncertainties. The small
transfer errors were obtained at temperatures on the order of 1K [50, 51]. A
comparison with the results obtained with GaAs SET pumps (see Section 6.2.2.1)
shows that semiconductor SET pumps with low transfer errors can be fabricated
with different material systems, indicating the universality of the concept.
As an outlook, we like to mention that Si SET pumps were investigated, in

which the pumping scheme involved trap levels or donor states [52–55]. This
work ismotivated by the notion that trap or donor states can have activation ener-
gies of a few 10meV [53]. These large energies may facilitate accurate pumping
of single electrons at higher frequencies and temperatures.
Looking beyond Si-based and GaAs-based semiconductor devices, it is

worth noting that clocked single-electron transfer at gigahertz frequencies was
also observed in a graphene structure [56] (see Section 5.5 for details about
graphene).

6.2.3 Superconducting Quantized Current Sources

In this section, metallic devices are discussed, in which superconductivity plays
a role. We begin with hybrid devices, which contain both normal and supercon-
ducting metals. At the end of the section, we briefly introduce devices in which
all metallic elements are in the superconducting state.
Let us consider an SET transistor, like that shown in Figure 6.2, with a

normal-metal charge island separated from superconducting source and drain
leads by fixed insulating tunnel barriers.This SINIS structure (S superconductor,
I insulator, N normal metal) was introduced in Ref. [57] together with the com-
plementary NISIN structure. The SINIS circuit shows the better performance
[4]; hence, we will restrict our discussion to it. A realistic implementation
is, for example, an Al/Al oxide/Cu/Al oxide/Al structure where Al is in the
superconducting state. To generate a quantized current, a periodic voltage is
applied to the gate electrode of the SINIS circuit and the circuit is biased with a
DC source–drain voltage. Thus, a turnstile device is realized.
In Section 6.1.4, we have discussed that clocked single-electron transfer cannot

be achieved with a single all-normal-metal (NININ) SET transistor. The impor-
tant difference betweenNININ and SINIS SET transistors is the superconducting
gap, which enables clocked single-electron transfer in SINIS turnstiles.The oper-
ating principle is schematically illustrated in Figure 6.13. Frame (a) shows the
tunneling of an electron from the filled states of the superconducting source lead
to the normal-metal charge island.This process takes place when the filled states
of the source are aligned with the lowest empty level of the charge island. After
this tunneling process, the electron cannot leave the charge island since the empty
states of the drain lead are located at higher energies due to the superconducting
gap. Subsequently, the potential levels of the charge island are raised by an appro-
priate adjustment of the gate voltage as shown in frame (b). Frame (c) illustrates
the final step of the cycle. The highest filled level of the island has been raised
above the superconducting gap of the drain lead and the electron can tunnel to
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EF Δ

Δ

(a) (b) (c)

Figure 6.13 Operating principle of an SINIS turnstile. Shown is the density of states of the
superconducting source (left) and drain (right) lead and the chemical potential of the
normal-metal charge island (center of each frame). (a) Tunneling of a single electron onto the
normal-metal charge island. (b) Increase in the chemical potential of the charge island due to
the change of the gate voltage. (c) Tunneling of the electron to the superconducting drain
lead. 2Δ is the superconducting gap and EF the Fermi level. Source: Courtesy of A. Müller, PTB.

empty drain states. Note that in this phase, the superconducting gap of the source
lead inhibits the uncontrolled transfer of another electron from the source to the
island.
Transfer errors can occur due to higher-order tunneling processes, which are

theoretically analyzed in Ref. [58]. Theory predicts that quantized currents of
30 pA can be generatedwith a transfer error of 10−8 with SINIS turnstiles [58]. For
real structures, the current is expected to be limited to 10 pA at this uncertainty
due to the nonuniformity of the tunnel barriers [4]. Accuracies of the quantized
current on the order of 10−3 were experimentally demonstrated, limited by the
uncertainty of the measuring instrument [59]. The experimental work has also
highlighted the importance of engineering the on-chip environment of SINIS
turnstiles to suppress higher-order tunneling processes [60–62].
An important advantage of SINIS turnstiles is their operation by a single

periodic gate voltage only. As for semiconductor SET pumps (see Section 6.2.2),
single-gate operation facilitates the fabrication of parallel circuits with increased
output current. The parallel operation of 10 SINIS turnstiles was demonstrated
in Ref. [63]. The parallel circuit generated a quantized current of 104 pA at
a clock frequency of 65MHz. The hybrid SINIS turnstile is a promising and
versatile concept, which was also implemented with a carbon nanotube as
normal conductor [64].
In the following, we discuss all-superconductor devices, which seem to have

several conceptual advantages. In such devices, Cooper pairs with charge (−2e)
are transferred without dissipation. The dissipationless transport avoids adverse
heating effects. Moreover, the doubling of the charge compared to the transport
of single electrons doubles the current at a given clock frequency. One may also
argue that in all-superconductor devices, the transport is coherent and, therefore,
better controllable than transport based on stochastic tunneling.
Experimentally, superconducting quantized charge pumps were investigated

that consisted of several superconducting charge islands separated from each
other and from the superconducting source and drain leads by fixed tunnel
barriers. The charge on the superconducting islands could be adjusted by gate
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voltages. Thus, the device design resembles that shown in Figure 6.6. Moreover,
the pumping concept resembles that described in Section 6.1.4 for normal-metal
SET pumps. Three-junction and seven-junction superconducting pumps were
realized with this concept [65, 66]. Yet, the transfer error of the quantized
current was found to be unsatisfactory. This result is ascribed to quasiparticle
tunneling, that is, the transfer of single charges e, taking place in addition to
Cooper pair tunneling.
Another type of superconducting quantized charge device is the so-called

superconducting sluice [67]. The device consists of a single superconducting
island whose charge can be controlled by an AC gate voltage. The charge
island is connected to source and drain leads using superconducting quantum
interference devices (SQUIDs), which act as switches. Switching between the
on- and off-state of the SQUIDs is realized by magnetic flux pulses, which
modulate the critical current of the SQUIDs (see Section 4.2). The flux pulses
are synchronized to the AC gate voltage so that clocked Cooper pair transfer
can be realized. Quantized currents of about 1 nA were demonstrated with this
concept, yet the accuracy of the current could not be improved beyond the 10−2
range [68].
Summarizing these results, the experimental realizations of all-superconductor

quantized charge devices have not yet fulfilled the expectations discussed ear-
lier assuming an ideal device. One reason is quasiparticle tunneling, which is not
accounted for in the picture of an ideal superconducting circuit.
As an outlook, we like to mention that there are other theoretical concepts

for quantized current sources based on superconductors. Examples are the
phase-locking of Bloch oscillations [5] and quantum phase slip devices [69].
These concepts are intriguing since they involve current steps that are the dual of
the Shapiro steps of Josephson voltage standards. In this approach, the transport
of Cooper pairs does not rely on stochastic tunneling, which holds the promise
of higher accuracy. However, the experimental realization of such quantized
current sources is still in its infancy.

6.2.4 Self-Referenced Quantized Current Sources

In this section, we discuss a concept that has the potential to improve the accu-
racy of quantized current sources. With very few exceptions, quantized current
sources rely on the stochastic tunneling of single electrons. Errors may occur
due to the stochastic nature of single-electron tunneling. For example, there is
a nonzero probability that no electron is pumped in a certain cycle of the clock
frequency.Therefore, the transfer error cannot be reduced to zero. Yet, the quan-
tized current can be determined more accurately if information on error events
is available and if this information is used to determine the value of the quan-
tized current. Consequently, it was proposed to incorporate SET detectors in a
series circuit of SET current sources tomonitor the error events in situ [43].With
the information on the errors, the quantized current of the series circuit can be
determinedwith an accuracy that is higher than that of the individual SET current
sources [43].
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Figure 6.14 SEM image of a self-referenced quantized current source. Three GaAs/AlGaAs SET
pumps (red circles) are connected in series via charge islands (blue boxes). GaAs quantum dots
are used as SET detectors (blue circles) to monitor the charge on the islands. The red arrows
indicate the quantized current in the electron source (left) and drain lead (right). Source:
Courtesy of F. Hohls, PTB.

Figure 6.14 illustrates the concept, which is known as a self-referenced
quantized current source [44].The figure shows three GaAs/AlGaAs SET pumps
connected in series and sandwiched between a source and a drain lead. Charge
islands have been fabricated between adjacent SET pumps, and the charge state
of these islands is monitored by SET detectors. The integrated circuit allows the
errors to be monitored in situ, that is, while a quantized current is generated and
supplied to the drain lead. The error accounting scheme can be applied if the
bandwidth of the SET detectors is larger than the error rate [43]. The detector
bandwidth does not have to exceed the much larger clock frequency. This
relaxed requirement substantially facilitates the experimental implementation
of self-referenced quantized current sources.
In self-referenced quantized current sources, the errors are monitored while

the source generates a quantized current. To emphasize this fact, we compare
them with other experimental arrangements that involve SET current sources
and SET detectors. These arrangements include setups for shuttle pumping and
the determination of the probability distribution of electron transfer. Shuttle
pumping was used to determine the transfer error of metallic single-electron
pumps [19, 22] and Si-based SET current sources [70, 71]. In shuttle pumping
experiments, single electrons are pumped on and off a charge island. No net
quantized current is generated during the shuttle pumping.The determination of
the probability distribution of electron transfer (counting statistics) is reported
in Refs. [72–74]. An SET current source was used to transfer electrons to a
charge island whose charge state was monitored. These experiments did not
involve the continuous supply of electrons to a drain lead. Thus, no useable
current was generated.
A proof-of-principle experiment to demonstrate a self-referenced quantized

current source was realized using GaAs/AlGaAs SET pumps combined with
metallic SET electrometers [44]. The integrated circuit was operated at a clock
frequency of 30Hz. The uncertainty achieved with the integrated circuit was
shown to be 50 times lower than that achieved with a single SET pump [44].
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6.3 Realization of the SI Ampere

The SI ampere can be realized with current sources or current meters, which link
the generated current or the current measurement to the elementary charge e as
defining constant of the present SI. An indirect link is established using Ohm’s
law and realizations of the SI volt and SI ohm based on the Josephson effect and
QHE, respectively. This approach is discussed in Section 6.3.1. A direct realiza-
tion of the SI ampere is obtained with quantized current sources as discussed at
the beginning of this chapter.The state-of-the-art of the direct ampere realization
is treated in Section 6.3.2.
The quality of any unit realization is judged by its uncertainty. To establish a

baseline, we briefly recall how the ampere was realized and which uncertainty
was achieved in the previous SI. The most accurate realization of the previous SI
ampere was based on the previous SI volt and ohm and the use of Ohm’s law.The
uncertainty of the SI ampere was limited by the uncertainty of the SI volt, which
was larger than the uncertainty of the SI ohm.The previous SI volt could be real-
ized with an uncertainty of approximately three parts in 107 using the so-called
voltage balance [75], as discussed in Section 4.1.5.1. In turn, the SI ampere could
be realized with the same uncertainty in the previous SI [76].
In Section 6.3, we focus on concepts for the ampere realization in the present

SI, which can achieve uncertainties of a few parts in 107 or better, that is, realiza-
tions with uncertainties that match or outperform those achieved in the previous
SI. Therefore, we mention only briefly here that the SI ampere can also be real-
ized applying a voltage, which linearly varies in time, to a capacitor to generate a
capacitive current [77].The concept is based on the relation I = dQ/dt =C dU/dt.
The SI ampere is realized if the SI values of the time-varying voltage and the
capacitance are known. The method generates currents in the subnanoampere
to femtoampere range with uncertainties of several 10 parts in 106 and larger.

6.3.1 Ampere Realization via the SI Volt and SI Ohm

In the present SI, the volt and ohm are linked to the Josephson constant K J=2e/h
and the von Klitzing constant RK = h/e2 by the Josephson effect and the QHE,
respectively (see Chapters 4 and 5). Since voltage values are proportional to K J

−1

and resistance values to RK, applying Ohm’s law I = U/R yields current values
that are proportional to (K J RK)−1 = e/2. Thus, the SI ampere is realized due to
the link to the defining constant e.
Any current-measuring setup or current source, which involves realizations of

the SI volt and SI ohm based on the Josephson effect and the QHE, respectively,
can be viewed as the realization of the SI ampere.The uncertainties of SI ampere
realizations vary widely. Relative uncertainties of one part in 106 and higher are
achieved in calibrations for industry [78, 79]. The uncertainty tends to increase
for smaller currents and is larger than 10 parts in 106 for currents below 10 nA in
these calibrations [78, 79].
References [34, 35, 40, 50, 51] report current-measuring setups optimized for

the measurement of small currents on the order of 100 pA. To improve the accu-
racy of the current measurement, a reference current was generated applying
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a voltage to a resistor. The voltage was traceable to the Josephson constant K J.
Traceability to the von Klitzing constant RK was achieved using a calibrated arti-
fact resistance standard of 1GΩ. The unknown current was compared to the
reference current measuring the difference between the two currents. Since the
difference is small, the uncertainty of this measurement affects the overall uncer-
tainty only slightly. After the calibration of the 1GΩ artifact standard had been
improved, a relative uncertainty of 0.27 parts in 106 was achieved when measur-
ing a current of 160 pA [51]. This uncertainty is comparable to that of the most
accurate realization of the ampere in the previous SI.
More accurate measurements of small currents can be realized using a concept

known as the ULCA [36].TheULCA consists of two stages if it is operated as cur-
rent meter. In the input stage, the current is amplified by an operational amplifier
and a resistor network, which implements a 3-GΩ/3-MΩ resistance ratio in the
standard configuration of Ref. [36]. Thus, a current gain of 1000 is realized. The
amplified current is then converted into a voltage in the output stage.The output
stage typically has a transresistance of 1MΩ [36], yielding an overall transresis-
tance of 1GΩ.The resistor network of the input stage consists of several thousand
carefully selected thin-film chip resistors [36].With this concept, low input noise
levels on the order of a few fA/Hz−1/2, a small drift of the transresistance (uncer-
tainty contribution 0.1 parts in 106 per week), and small temperature coefficients
of the current gain and transresistance (on the order of 0.1 parts in 106 per kelvin)
can be achieved [36]. The ULCA is operated at room temperature, making it a
practical and easy-to-use instrument. It can also be used as current source if the
current-to-voltage conversion is not implemented.
The input stage of the ULCA, that is, the current ratio, can accurately be deter-

mined with a cryogenic current comparator (CCC) [80] (for more details on
CCCs, see Section 4.2.3.3). Reference [81] has shown that this measurement can
be performed with a relative uncertainty of 0.06 parts in 106. The transresistance
of the output stage can be linked to the von Klitzing constant RK using a CCC
and a DC quantumHall resistance standard. If the output voltage is linked to the
Josephson constant K J, the ULCA realizes the SI ampere based on Ohm’s law.
Different versions of the ULCA have been developed, which can be used to

realize the SI ampere from the femtoampere to the microampere range [82].
The different ULCA versions have been optimized for different purposes in
low-current metrology [82, 83], whose importance increases, for example,
in radiation dosimetry or for concentration measurements of nanoparticles
in aerosols [79]. Regarding fundamental metrology, we like to emphasize the
importance of the ULCA for the characterization of SET pumps. The ULCA
allowed small currents of SET pumps to be measured with uncertainties as low
as 0.16 parts in 106 [38], as discussed in Section 6.2.2.1.
The uncertainty of the ampere realization based on Ohm’s law can be further

reduced if the use of artifact standards is avoided. Reference [78] reports a quan-
tum current generator based on a DC quantum Hall resistance standard and a
programmable binary Josephson voltage standard. The quantum standards are
connected using the so-called multiple connection technique to reduce the con-
tribution of contact resistances [84] as discussed in Section 5.4.3. They gener-
ate a current without resorting to artifact voltage and resistance standards. The
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current is amplified by a CCC. The Josephson voltage standard, the quantum
Hall resistance standard, and the CCC are operated in three different cryogenic
setups. Amplified currents of approximately 1mAwere experimentally shown to
have an uncertainty of one part in 108, thereby realizing the SI ampere with this
uncertainty. Theoretical analysis shows that through this approach the ampere
can be realized with an uncertainty of one part in 108 over the range from 1 μA
to 10mA [78].

6.3.2 Direct Ampere Realization with Quantized Current Sources

The SI ampere is realized in a direct way, that is, without resorting to Ohm’s law
and the SI volt and ohm, if a quantized current is generated according to Eq. (6.1).
Here, we summarize which quantized current sources have been shown to realize
the SI ampere with an uncertainty of a few parts in 107 or better. As mentioned
earlier, this uncertainty of the ampere realization was achieved in the previous
SI [76] and can be viewed as the benchmark for the ampere realizations in the
present SI. The important parameter, which determines the accuracy of a quan-
tized current source and, hence, the uncertainty of the direct ampere realization,
is the transfer error, as discussed at the beginning of Section 6.2.
A transfer error of 1.5 parts in 108 was achieved with a seven-junction metallic

SETpump at a clock frequency of 5.05MHz [19] (see Section 6.2.1). Five-junction
R-pumps achieved transfer errors of a few parts in 108 [22]. Both types of SET
devices realize the ampere in the range of 1 pA. Such small currents are sufficient
for experiments, in which not the current itself is measured, but the charge that
is accumulated operating the quantized current source for a well-defined time
[23, 24].
An accurate ampere realization in the 100 pA range can be achieved with semi-

conducting quantized current sources, as discussed in Section 6.2.2. GaAs SET
pumps were experimentally shown to have a transfer error of at most 0.16 parts
in 106 when generating a current of 96 pA [38].The quantized current of a Si SET
pump was experimentally shown to have a transfer error of at most 0.27 parts in
106 when generating a current of 160 pA [51]. All ampere realizations with quan-
tized current sources mentioned in this section have an uncertainty that either
matches [51] or outperforms [19, 22, 38] the uncertainty of the ampere realization
in the previous SI.

6.4 Consistency Tests: QuantumMetrology Triangle

The QMT is a consistency test of the three electrical quantum effects – the
Josephson effect, the QHE, and single-charge transfer. The QMT aims at verify-
ing the relation of the quantized voltage and resistance to the Josephson constant
K J = 2e/h and the von Klitzing constant RK = h/e2, respectively. Moreover, the
QMT intends to verify that the quantized charge qS, which is transferred
through an SET device, is exactly equal to the elementary charge e, as assumed in
Eq. (6.1). Thus, the aim of the QMT is to verify that the electrical SI units can
indeed be realized as described in Chapters 4–6.
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Figure 6.15 The quantummetrology triangle
in the current version applying Ohm’s law
(upper part, solid lines). As an alternative, the
charging of a capacitor is studied in the charge
version of the quantummetrology triangle
(lower part, dashed lines). Source: Göbel and
Siegner 2015 [6]. Reproduced with permission
of John Wiley & Sons.
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The QMT is based on Ohm’s law, which is illustrated by the upper triangle
in Figure 6.15. In this section, we briefly discuss the basic idea of the QMT
experiment, its experimental implementations, and their results. Comprehensive
reviews can be found in Refs. [22, 85].
For convenience, we recall the respective equations of the three quantum

effects:

UJ =
nJfJ
KJ

(6.10)

RQHE =
RK

i
(6.11)

ISET = ⟨nS⟩ef S (6.12)

Equation (6.12) contains the average number of transferred elementary charges⟨nS⟩ to account for the occurrence of transfer errors. Using Ohm’s law, we obtain
from Eqs. (6.10)–(6.12)

nJi⟨nS⟩ fJfS = KJRKe = 2 (6.13)

In this equation, nJ and i are known integer step numbers. The frequency ratio
f J/f S and the average number of transferred charges ⟨nS⟩ must be determined
experimentally. To determine ⟨nS⟩, a self-referenced quantized current source
[43, 44] is needed (see Section 6.2.4 for more details on self-referenced quantized
current sources). A measurement of the current is not sufficient for this purpose
since it would only determine the product of qS and ⟨nS⟩.The proof that Eq. (6.13)
is valid is often referred to as the closure of the QMT. Any deviation would cast
doubt on the strict validity of at least one of the equations K J = 2e/h, RK = h/e2,
and qS = e.
Different approaches have been followed to close the QMT experimentally.

In a straightforward one, the quantized current generated by an SET device
is supplied to a quantum Hall resistor, and the Hall voltage is measured by
comparison to a Josephson voltage standard. Even if a nanoampere quantized
current source is available, current amplification is required to achieve an
uncertainty on the order of 10−7. The use of a CCC with a high winding ratio
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was suggested for this purpose [86]. Such an experiment was realized with a
normal-metal three-junction R-pump as quantized current source [87]. Yet, the
experimental setup did not allow ⟨nS⟩ to be measured independently. Therefore,
the closure of the QMT could not be investigated. At the time of writing, the
closure of a QMT, which directly implements Ohm’s law, was not yet reported.
In an indirect approach developed first at the NIST, a cryogenic capacitor with

capacitance CCR is charged by an SET device. The “charge version” of the QMT
is illustrated in the lower part of Figure 6.15. A total charge QSET = ⟨nS⟩ef STS
is accumulated over a well-known time TS. The voltage across the capacitor
is measured by comparison to a Josephson voltage standard. As described in
Section 5.4.4, the value of CCR can be linked to RQHE via a quadrature bridge.The
QMT experiment can be combined with an electron shuttle pumping measure-
ment, which determines the average number of transferred elementary charges⟨nS⟩. Using a seven-junction SET pump, the NIST experiment demonstrated
the closure of the QMT with a relative standard uncertainty of 0.9 parts in 106
[23, 88]. The PTB reported the closure of the QMT with an uncertainty of 1.7
parts in 106 using a five-junction R-pump to charge the capacitor [24].
Regarding the implications of these results, we first recall that the Josephson

effect and the QHE are highly reproducible, as discussed in Sections 4.1.4 and
5.4.1, respectively. Yet, strictly speaking, the high reproducibility only implies
that the effects are universal, but does not give information on how well they
are described by the defining constants e and h. More information is obtained
from theory, which does not predict any appreciable deviation from K J = 2e/h
and RK = h/e2 (for a more detailed discussion, see [4, 85]). However, theory alone
cannot provide a rigorous proof of the validity of the relations, but experimental
data should also be analyzed. Such an analysis has been made in the framework
of the adjustment of the fundamental constants [89].The adjustment of 2014 ver-
ifies the validity of the relations RK = h/e2 and K J = 2e/h at the level of 10−8 [89].
Thus, the present QMT results mainly support the precision of charge quantiza-
tion at the level of 10−6. The improvement of QMT experiments toward the 10−8
level is desirable even though the electrical quantum effects already rest on very
solid grounds.
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7

The SI Kilogram, the Mole, and the Planck Constant

Mass is a difficult quantity. This becomes obvious when trying to explain in a
few words what mass is all about. Macroscopically, it is related to matter, though
matter is not a clearly defined concept in physics. Mass (gravitational mass) is
proportional to the weight of a body, which is the gravitational force imposed
by the gravitational field of a second mass, for example, the earth. More strictly
speaking, weight is any force that affects the free fall of a body. Mass (inertial
mass) reflects the resistance of a body to change its velocity, and the force needed
to change its velocity is proportional to its mass. According to Einstein’s equiva-
lence principle, inertial mass and gravitational mass are identical. This has been
confirmed by experiments on the level of 10−12. Furthermore, mass is equivalent
to energy according to Einstein’s famous formula

E = m0c2 (7.1)

as reflected in the so-called mass deficit corresponding to the binding energy of
a composed system. In this equation,m0 is the mass of a body at rest. According
to special relativity, the inertial mass depends on its velocity, v:

m(v) =
m0√
1 − v2

c2

(7.2)

Macroscopicmasses come about by the sum of themass of the constituting ele-
mentary particles reduced by themass deficit.However, how elementary particles
receive their mass has long been a puzzle. Within the standard model of particle
physics, elementary particles receive their mass through the interaction with the
so-called Higgs field. It was named after Peter Higgs who together with Francois
Englert received the 2013Nobel Prize in physics after the discovery of a particle at
the EuropeanOrganization for Nuclear Research (CERN) LargeHadronCollider,
which is the long-searched Higgs boson.
In spite of all these complications with the quantity mass, the definition of its

unit, kilogram, in the previous SI was apparently straightforward and simple: it
related any mass to the mass of the International Kilogram Prototype (IKP). The
mass of the kilogram prototype was historically defined to be equal to the mass
of a cubic decimeter of pure water at the temperature of its highest density of
about 4 ∘C. It had been realized by the Kilogramme des Archives of the French
Academy of Sciences (for further reading of the history of the kilogram definition

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
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and prototype, see [1, 2]). The choice of the inert Pt/Ir alloy as the material of the
prototype should ensure a stable standard provided the appropriate handling and
cleaning procedure would be applied. At the time of the firstConférence Générale
des Poids et Mesures (CGPM) in 1889, 30 Pt/Ir copies of the prototype had been
produced and distributed among the 17 signature countries of the Metre Con-
vention (Convention du Mètre) as their national mass standard and the Bureau
International des Poids et Mesures (BIPM). Countries joining theMetre Conven-
tion at a later time (at the time of writing, there were 60 signatories of the Metre
Convention) were also entitled to receive a Pt/Ir copy of the prototype. Subse-
quent comparisons of the national prototypes with the IKP performed in 1950
and 1990 revealed a problemwith the apparently straightforward and simple def-
inition of the mass unit kilogram: obviously, there has been a drift between the
mass of the international prototype and its copies by an average of about 30 μg
over 100 years with a trend toward an increase of the mass of most national pro-
totypes (see Figure 7.1). However, the results shown in Figure 7.1 could as well
indicate a mass drift of the international prototype instead.
To overcome the obvious weakness of the previous SI definition, the kilogram

is now defined by the Planck constant (in conjunction with Δ𝜈Cs and c; see
Section 2.2.3). The Planck constant, conventionally labeled h, is one of the
fundamental constants of nature. It was introduced originally by Max Planck in
1900 when developing a theoretical description of the emission spectrum of a
so-called blackbody radiator [4]. Its consequence that the energy of a harmonic
oscillator has to be quantized in terms of E = h𝜈 (𝜈 being the frequency) laid the
base for the quantum theory.
The question on how fundamental a constant is really is not always easy to

answer (see, e.g. [5–7]). Without question, however, the speed of light in vac-
uum, c, and the Planck constant, h, are fundamental in the theory of relativity
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Figure 7.1 Mass difference of different National Kilogram Prototypes (black) and BIPM
working standards (gray) and the International Kilogram Prototype defining the horizontal line
atΔm = 0. Source: Göbel and Siegner 2015 [3]. Reproduced with permission of John Wiley &
Sons.
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and quantum physics, respectively. Indeed, as first pointed out by Planck, c and
h together with Newton’s gravitational constant, G, set up universal units for
length, time, and mass (Planck units), which, however, turned out to be unprac-
tical (see, e.g. [8]). Of course, there are further requirements for the choice of the
defining constants of the SI. Most important, their values must be known with
the required uncertainty, and there must exist a link between the unit and the
respective defining constants. However, as already mentioned in Chapter 2, the
definitions in the present SI leave room for different realizations. For the kilo-
gram, the Consultative Committee for Mass and Related Quantities (CCM) of
the International Committee for Weights and Measures (Comitè International
des Poids et Mesures) (CIPM) had required one measurement of the Planck con-
stant with a relative uncertainty of at least 2× 10−8 [9]. Furthermore, the CCM
required that at least three independent experiments yielded consistent values for
the Planck constant with relative standard uncertainties not larger than 5× 10−8.
Several experimental approaches have or had been pursued to provide the link

between a macroscopic mass and the Planck constant, for example, voltage bal-
ance, superconducting magnetic levitation, the Avogadro experiment, and the
Kibble balance (formerly calledWatt balance).The last two are described inmore
detail in Sections 7.2 and 7.3.
In a voltage balance [10–12], the force between the electrodes of a capaci-

tor with a voltage applied to it is compared to the weight of a calibrated mass.
Though these experiments were initially performed to realize the volt or to deter-
mine the Josephson constant (see Section 4.1.2), they could also link a mass to
the Planck constant if the capacitance is traced back to the von Klitzing con-
stant (see Section 5.4.4). However, to our knowledge, these experiments have not
been pursued since the best relative uncertainty achieved was at the 10−7 level.
A dynamic version of a voltage balance for measuring inertial mass and relating
it to the Planck constant has been developed at the National Institute of Metrol-
ogy (NIM), China [13] (see Section 7.3). Superconducting magnetic levitation
experiments [14–17] make use of the ideal diamagnetic property of a supercon-
ductor (see Section 4.2.1.1): a superconducting material with a calibrated mass
is levitated in the magnetic field created by a current driven coil. Change of the
current results in the levitation of the superconducting mass at different heights.
Measuring the current in terms of the Josephson and quantum Hall effects then
provides the link between mass and the Planck constant. Even though fractional
uncertainties of order 10−6 had been achieved, these experiments have not been
continued.
Before describing theAvogadro andKibble balance experiments in Sections 7.2

and 7.3, respectively, we briefly discuss in Section 7.1 the history and arguments
that led to the decision to choose the Planck constant as the defining constant
for the kilogram. In Section 7.4, we discuss the present definition of the mole and
its realization. Finally, in Section 7.5, we summarize the Committee on Data for
Science andTechnology (CODATA) evaluation of the value of the defining Planck
constant as well as the present realization, maintenance, and dissemination of the
kilogram.
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7.1 From “Monitoring the Stability of the Kilogram”
to the Planck Constant

In this section, we sketch the process that finally led to the decision to base the
definition of the kilogram on a fixed value of the Planck constant.
It was the concern about the stability of the IKP and/or its official copies that

triggered the discussion about new definitions of the kilogram and other SI base
units. Despite the pretended simple 1889 definition of the unit kilogram as the
mass of the IKP it never had been that simple in praxis. One of themajor concerns
has been the cleaning procedure to be applied (see, e.g. [1]). However, it was not
until in 1988 in preparation of the third official comparison (verification) of the
IKP with the national prototypes and the BIPM official copies that a careful and
well-documented study of the effect of cleaning on the mass of the respective
standard had been performed [18]. This study was lead by Georges Girard, the
then head of the mass section of the BIPM.The IKP lost about 57 μg and further
6 μg after, respectively, a first and second cleaning step with a jet of steam from
pure water. Further, the IKP and the other standards showed a rapid increase
in their mass by about 5 μg within the first 120 days after cleaning. This finding
raised the question on how the 1889 definition had to be interpreted. In 1989,
the CIPM decided [18] after consultation with the CCM that the 1889 definition
referred to the mass of the IKP just after cleaning by the BIPM procedure [19].
The results of the third verification of the kilogram as depicted in Figure 7.1

showed a clear trend that the difference between the mass of the IKP and its
copies increased to about an average of 30 μg [20]. Nevertheless, based on results
of these verifications, no conclusion was possible as to which of the masses had
changed though it seemed likely that the mass of the IKP had decreased. The
steady increase of the mass difference between the IKP and its copies, however,
was not found by a fourth verification in 2014 performed to calibrate the mass
standards used for the Kibble balance and Avogadro experiment. Instead, the
masses seemed to be stable between the third and fourth verification [21, 22].
All this called for methods to monitor the stability of the kilogram and finally
come to an absolute mass standard. And indeed, the CIPM recommendation 4
in 1993 [23] and the 20th CGPM under resolution 5 recommended [24] “that
national laboratories pursue their work on experiments, and develop new ones,
with a view to monitoring the stability of the international prototype of the kilo-
gram and in due course opening the way to a new definition of the unit of mass
based upon fundamental or atomic constants.”
Regarding the fundamental constant, the Planck constant, conventionally

labeled h, seemed to be an obvious choice. The Planck constant has the unit of
action, which is J s equal to m2 kg s−1. Since in the previous and present SI the
second and the meter are defined in terms of fundamental constants, namely the
hyperfine splitting of the electronic ground state of 133Cs (Δ𝜈Cs) and the speed
of light in vacuum (c), the kilogram can be defined via the Planck constant,
provided its value is known with the required uncertainty of a few parts in
108 as required by the CCM and CIPM [9]. As said above, several experiments
that could provide a direct link of the kilogram to the Planck constant were
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considered and pursued, for example, the voltage balance, superconducting
magnetic levitation, and the Kibble and Joule balances. The Kibble balance
provides a direct link between the Planck constant and a macroscopic mass via
a virtual comparison of electric and mechanic power induced by a test mass,
which had been the reason for labeling this experiment “Watt balance.” Later,
in honor of the inventor of this experiment, Brian Kibble, its name has been
changed to Kibble balance.
A direct link of the kilogram to an atomic constant, specifically to an atomic

mass could be accomplished by the silicon single crystal (Avogadro) experiment
and the ion accumulation experiment. Of course, the same requirements for
the uncertainty of the experiment were valid. Since it seemed more likely
that the Avogadro experiment than the ion accumulation experiment could
reach the 10−8 uncertainty level the Physikalisch–Technische Bundesanstalt
(PTB) (National Metrology Institute of Germany) decided to abolish the ion
accumulation experiment and to concentrate its efforts on the Avogadro
experiment, which has been pursued in an internationally coordinated project
(IAC, International Avogadro Coordination). The Avogadro experiments (also
called X-ray crystal density, XRCD method ) directly determines the Avogadro
constant, NA, by counting the number of atoms in an isotopically enriched 28Si
single crystal (see Section 7.2). The link to the kilogram would have been given
by the defining equation

1 kg ≡ 103{NA}mu (7.3)

which followed from the previous definition of the mole. {NA} is the Avogadro
number, i.e. the numerical value of the Avogadro constant, andmu = 1/12m(12C)
the atomic mass constant.
So, there were two options, namely, redefining the kilogram by choosing as the

defining constant the Planck constant, h, or the Avogadro constant, NA, or simi-
larly the atomic mass constantmu. (Note that a direct definition of the kilogram
via a fixed Avogadro constant according to Eq. (7.3) rests on the previous defi-
nition of the mole.) In either case, the determination of either constant, NA or h
with a relative uncertainty of order 10−8 as it had been required by the CCM [9]
would also determine the respective other constant with the same uncertainty
[25, 26]. This is because the molar Planck constant

NAh = 𝛼
2c

2R∞
Ae

rMu (7.4)

(with the fine-structure constant 𝛼, the Rydberg constant R∞, the relative atomic
mass of the electron Ae

r , and the molar mass unit Mu) is known with an rela-
tive uncertainty of few parts in 10−10 [27], which is considerably smaller than the
uncertainty required for the new definition of the kilogram.
There have been pros and cons for either option. Pros for defining the kilogram

by fixing the value of h are, e.g. [25], given as follows:

(i) The two major pillars of our present understanding of physics are theories
of relativity and quantum physics. The respective fundamental constants in
these theories are the speed of light in vacuum, c, and the Planck constant,
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h, respectively. The speed of light c had already been fixed in the previous
SI and is still fixed in the present SI by the definition of the meter. Defining
the kilogram by a fixed value of h thus complements the meter definition in
such that both fundamental constants are then part of the SI. Further, the
constants that appear in the fundamental relations E =mc2, E = h𝜈, and the
de Broglie equation 𝜆 = h/p = h/mv then all have exactly known values.

(ii) Since in the present SI the value of the elementary charge e as defining con-
stant for the ampere is fixed and thus exactly known, the Josephson constant
K J = 2e/h and the von Klitzing constant RK = h/e2 (see Chapters 4 and 5) have
exact values and thus K J-90 and RK-90, the conventional values for K J and RK
in the previous SI are abolished. Hence, the conventional (non-SI) units volt,
V 90, and ohm,Ω90, are also eliminated. Instead, these electrical units are now
realized by a primary realization tracing them directly back to defining con-
stants of the SI.

Themajor con for choosing h as the defining constant for the kilogramhas been
the missing direct link to a mass making it difficult to easily explain it outside the
metrology community. In contrast, choosing the Avogadro constant, NA, as the
defining constant for the kilogramwould have beenmuch easier to communicate
since it directly relates the kilogram to a mass, e.g.mu.
Both options were therefore discussed intensively by the respective organiza-

tions of the meter convention, the CCM, the Consultative Committee for Units
(CCU), and the CIPM as reflected in their respective resolutions as well as the
resolutions of the CGPM (see, e.g. [28, 29]). For the final decision of the CIPM
[30] and CGPM [31], the pro (ii) was the decisive argument for choosing h as the
defining constant in the present definition of the SI.
In Sections 7.2 and 7.3, we present, respectively, the Avogadro and Kib-

ble balance experiments, which finally determined the value of the defining
constant, h.
Naturally both are ideal for the realization and dissemination of the mass unit

kilogram [32].

7.2 The Avogadro Experiment

The Avogadro experiment [33, 34], or XRCD experiment, is aimed at the deter-
mination of the Avogadro constant, NA, by counting the number of atoms in a
mole of a high-purity Si single crystal. However, as mentioned in Section 7.1, it
also provides an independent approach for a precise determination of the Planck
constant through Eq. (7.4). It had originally been pursued to provide an alterna-
tive definition of the kilogramby tracing it to an exactly defined atomicmass, such
as 12C or 28Si, or themass of an elementary particle [35]. Since the relativemasses
of atoms and elementary particles such as the electron can be determined very
accurately using Penning traps, one basically would have been free in the choice
of the reference mass.
It is worth mentioning here the other experiment that also would provide a

direct link of a macroscopic to an atomic mass, the so-called ion accumulation
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experiment [36]. Its idea has been to use a modified mass spectrometer where
ions of a specific element are generated and finally collected in a Faraday cup con-
nected to a balance. The moving ions result in a current, which can be measured
by the Josephson and quantumHall effects (see Chapters 4 and 5) and integrated
over the entire accumulation time, thereby providing the number of ions imping-
ing onto the Faraday cup. The monoisotopic elements 197Au and 209Bi had been
used as ion sources. A proof of principle had been demonstrated by accumulating
38 mg of Bi. The atomic mass unit determined from this experiment agreed with
the CODATA value within 9× 10−4 [37]. Nevertheless, foreseeing the difficulties
encountered to reduce the uncertainty by more than 4 orders of magnitude, the
experiment has not been pursued further.
Coming back to the Avogadro experiment, the Avogadro constant is the num-

ber of specified entities in the amount of substance of 1mol in a pure substance.
It is a scaling factor that links atomic and macroscopic properties.
For a perfect pure silicon single crystal, the Avogadro experiment relates its

mass,m, to the number of Si atoms contained in the crystal,NSi, and the mass of
the Si atom,mSi:

m = NSimSi = NSi
MSi

NA
(7.5)

where MSi is the molar mass of Si. For a perfect single crystal, the number of
atoms contained is given by its volume, V , divided by the volume occupied by
one atom, V Si; thus,

NSi =
V
VSi

= 8V
a30

(7.6)

where a0 is the lattice parameter (lattice constant) and thus a30 is the volume of
the Si crystal unit cell. The factor 8 accounts for the fact that in a perfect Si single
crystal, the unit cell contains eight Si atoms. Combining Eqs. (7.6) and (7.5) yields

m = 8V
a30

MSi

NA
(7.7)

As Si has three stable isotopes, 28Si, 29Si, and 30Si, the molar mass,MSi, is given by
the sumof themolarmass of the isotopesweighted by their (amount of substance)
abundances, f i:

MSi =
∑
i
fiMi

Si =
∑
i
fiAi

rMu (7.8)

with Ai
r being the relative atomic mass and Mu being the molar mass unit. For

natural Si, the abundances are about f 28 = 0.922, f 29 = 0.047, and f 30 = 0.031.
If we now finally consider Eq. (7.4), we end up with the basic relation linking a
macroscopic mass to the Planck constant [26]:

m = 8V
a30

2R∞h
c𝛼2

∑
i

fiAi
r

Ae
r

(7.9)

where R∞ is the Rydberg constant, c the velocity of light in vacuum, 𝛼 the
fine-structure constant, and Ae

r the relative atomic mass of the electron. Note
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that the Avogadro constant does not enter explicitly, yet, the name “Avogadro
experiment” is kept. For the determination of the Planck constant before the
revision of the SI according to Eq. (7.9), the volume of the single crystal, the
lattice parameter, and the isotopic composition had to be measured. Of course,
the mass of the used single crystal must also be determined with the required
uncertainty. The relative atomic masses of the Si isotopes are measured by
comparing cyclotron frequencies in Penning traps and their abundances in the
specific Si crystal by mass spectroscopy. The constants appearing additionally
in Eq. (7.9) are known with sufficiently small uncertainty: the speed of light in
vacuum is defined and thus exact. The Rydberg constant, fine-structure con-
stant, and relative atomic mass of the electron are known with relative standard
uncertainties of 5.9× 10−12, 2.3× 10−10, and 2.9× 10−11 [27], respectively, and
thus, their uncertainty contribution can be neglected at the required 10−8 level.
Wenowdiscuss the individualmeasurements a littlemore in detail, considering

also additional constraints. Silicon has become the material of choice due to its
use inmicroelectronics where large-sized high-purity and almost perfect crystals
can be synthesized. However, in view of the small fractional uncertainty of the
order 10−8 required for the realization of the new kilogram, crystal perfection
and purity (i.e. defect (vacancy) and impurity concentration) have to be inves-
tigated quantitatively. The major impurities to be considered, after growth and
purification bymultiple float zone crystallization, are interstitial oxygen and sub-
stitutional carbon and boron.Their concentration can be determined by infrared
spectroscopy [38]. An estimate of the vacancy concentration can be obtained by
positron annihilation experiments [39].
In view of the most precise determination of the volume of the macroscopic

Si single crystal, a sphere has been chosen (see Figure 7.2). The volume of the
sphere can be determined by a series of diameter measurements scanning the
entire surface. The diameters are measured by optical interferometry [40, 41].
The layout of a specially constructed spherical Fizeau interferometer is schemat-
ically shown in Figure 7.3. The central part consists of a temperature-controlled
vacuum chamber containing the sphere and the Fizeau optics. The two arms
of the interferometer are illuminated by plane wave light coming from tunable

Figure 7.2 Photo of a single
crystal Si sphere used in the
Avogadro experiment. The
diameter and mass,
respectively, are about 10 cm
and 1 kg. Source: Courtesy of
PTB.
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Figure 7.3 Schematic drawing of the spherical Fizeau interferometer constructed at PTB.
Source: Courtesy of A. Nicolaus, PTB.

diode lasers throughmultimode optical fibers.The Fizeau objectives are carefully
adjusted to have their focal point in the center of the sphere. First, the diameter
of the empty etalon, D, and subsequently the distances between the sphere sur-
face and the reference surfaces, d1 and d2, are measured. The diameter of the
sphere, d, is then obtained by subtracting d1 and d2 fromD. With this technique,
some 10 000 diameters can be measured simultaneously depending on the reso-
lution of the camera system.The sphere can be rotated around the horizontal and
vertical axes to cover it completely by overlapping diameter measurements. The
obtainable uncertainty depends critically on how well the shape of the sphere
matches the wave front of the interferometer light. Having high-quality objec-
tives and production of an almost perfect sphere are thus the most critical issues.
Furthermore, the surface of the sphere is generally covered by different surface
layers, in particular, silicon oxide, which not only have to be considered for the
mass correction but also for evaluating the interferometry results, due to their
different index of refraction and resulting phase shifts.
A measured diameter topography of a silicon sphere is shown in Figure 7.4.

Peak-to-valley deviations from a perfect sphere are of the order of some
10 nm, resulting in uncertainty of the volume determination of presently
about 10−8 [42–46].
As mentioned earlier, the composition and thickness of the surface layer

of the Si spheres must be determined for both mass correction and volume
determination. It is important to note that for the mass correction, only the
relative mass of the respective elements with respect to Si enters, and thus, the
traceability to a mass standard is not required. The standard methods applied
for thickness and optical constants measurement are X-ray reflectometry (XRR)
and optical spectral ellipsometry (SE). However, since the surface layer not only
may contain different silicon oxides (SiOx) but possibly also chemisorbed water
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Figure 7.4 Diameter variations
of a single crystal Si sphere.
Source: Courtesy of A. Nicolaus,
PTB.

and other contaminants, analytical methods, in particular, X-ray photoelectron
spectroscopy (XPS), X-ray fluorescence (XRF), and near-edge X-ray absorption
fine structure (NEXAFS), are applied (see, e.g. [47]). Combining the results of
the individual experiments enabled to develop a detailed model of the surface
layer [48] and to estimate its contribution to the overall fractional uncertainty of
the experiment to presently below 10−8.
For the measurement of the lattice parameter, a combined optical and X-ray

interferometer is used [49], as schematically shown in Figure 7.5.TheX-ray inter-
ferometer follows the design by Bonse and Hart [50]. It consists of three mono-
lithically fabricated parallel single crystal Si plates, each of about 1mm thickness
and separated by the same amount. The surface of these plates is orthogonal to
the lattice plates to be measured. In the case of Si, the spacing d220 of the {220}

Mo Kα

Optical
interferometer

Multianode
detector

Displacement

PhotodiodeNd:YAG

Fixed crystal Analyzer

Figure 7.5 Schematic layout of the combined optical and X-ray interferometer for measuring
the lattice constant of crystalline Si. Source: Courtesy of E. Massa, G. Mana, INRIM.
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Figure 7.6 Operation principle of a
Bonse–Hart X-ray interferometer.
The three single crystal plates
labeled S, M, and A act, respectively,
as beam splitter and transmission
optics for the incident X-ray. The
crystal planes are indicated by the
black dots representing the atom
position (not to scale). The crystal
plates must have equal thickness,
and the spacing between themmust
be the same. Source: Göbel and
Siegner 2015 [3]. Reproduced with
permission of John Wiley & Sons.

S

M

A

D
d

planes is measured because of their low absorption. The lattice parameter a0 is
then obtained according to a0 =

√
8d220.

The operation principle of the X-ray interferometer is illustrated in Figure 7.6.
Thefirst plate (labeled S) acts as a beam splitter for the incidentX-ray due toBragg
reflection at the crystal planes. The two other plates (M and A) act as transmis-
sion optics, where the two plane waves generated by plate S are recombined by
plate M at the position of the analyzer (plate A). Moving the analyzer orthogonal
to the direction of the lattice planes causes a periodicmodulation of the transmit-
ted and diffracted beams (Moiré effect) with a period of the lattice spacing, d, and
independent of the X-ray wavelength. The central part of the X-ray interferome-
ter of the Italian metrology institute INRIM (National Institute of Metrology of
Italy), Torino, [49] is shown in Figure 7.7. Considering the effect of point defects
on the lattice parameter, the average lattice constant of a macroscopic Si sphere
can be determined presently with a fractional uncertainty of the order of 10−9

Figure 7.7 Photo of the central part of the INRIM X-ray interferometer showing the Si crystal
plates right in the center. The experiment is performed in a temperature-stabilized vacuum
chamber. A Mo K

𝛼
X-ray source and an iodide-stabilized single-mode He–Ne laser are used for

the X-ray and optical interferometer, respectively. Source: Courtesy of E. Massa, G. Mana, INRIM.
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[49] corresponding to attometer resolution. As pointed out recently at this level
of precision dimensional measurements by laser interferometry as applied in the
combined X-ray/optical interferometer require a careful correction because of
diffraction [51, 52].
Finally, the ratio of the atomic masses of silicon with its specific isotope com-

position and the electron (factor
∑

i fiAi
r∕Ae

r in Eq. (7.9)) must be determined,
which is basically a molar mass determination of the Si crystal (c.f. Eq. (7.8)).
The standard technique for molar mass determination is by gas mass spectrom-
etry, which, of course, requires the crystal to be dissolved and transferred to a
gaseous compound by chemical reactions [53, 54]. It turned out in the frame of
the determination of the Avogadro constant that the uncertainty of the molar
mass determination of natural Si of about 3× 10−7 limited the achievable total
uncertainty to about 10−7 [55]. This was the start of an international research
effort to produce a high-purity single crystal with highly enriched 28Si [56] where
29Si and 30Si make only a small correction to the molar mass. In fact, for a crys-
tal with f 28 ∼ 0.9999%, the uncertainty of the molar mass could in principle be
reduced by several orders of magnitude compared to natural Si [57].
Two different high-quality 28Si single crystals have been produced so far for the

Avogadro experiment. The first 5 kg 28Si single crystal labeled “AVO28” was pro-
duced for the IAC project in 2004 to 2007. The production proceeded in several
steps starting with the enrichment of SiF4 gas by centrifugation at the Science
and Technical Center (Centrotech) in St. Petersburg, Russia, from which, after
conversion into SiH4, a polycrystal was grown at the Institute of Chemistry of
High-Purity Substances of the Russian Academy of Sciences (ICHPS RAS) in
Nizhny Novgorod. Finally, the polycrystal was transformed into a 5 kg 28Si sin-
gle crystal by floating zone (FZ) single crystal growth at the Leibniz Institute
for Crystal Growth (IKZ) in Berlin, Germany. Two precise spheres were pro-
duced from the single-crystal rod at the CSIRO, Australia [58], for the subsequent
determination of the Avogadro constant [42–44]. In 2012, the PTB started a new
project named kg-2 [45, 59] to produce two additional 5 kg 28Si crystals. The
isotopic enrichment was again performed in Russia but this time at the Stock
Company “Production Association Electrochemical Plant” in Zelenogorsk near
Krasnoyarsk. The subsequent production steps were the same as for “AVO28”
except that the spheres were produced at PTB. The first crystals of this produc-
tion with an enrichment of 99.9985% became available in 2015, and three spheres
were produced for the experimental determination of the Avogadro constant at
PTB and the National Metrology Institute of Japan (NMIJ), respectively [45, 46].
Despite the high enrichment, the molar mass must be measured. Measure-

ment was done by a modified isotope dilution mass spectrometry (IDMS)
in combination with a multicollector inductively coupled plasma (ICP) mass
spectrometer [60]. In IDMS, a spike with an isotope of the substance to be
determined is added to the sample to be analyzed. Since the chemical properties
of the isotopically marked substance and the nonmarked substance are identical,
their peak ratio of the mass spectrometer signal reflects the mass ratio of both.
As the mass of the spike can be measured before adding it to the sample, this
serves as a calibration, and the unknown mass fraction can be determined. The
basic idea of the IDMS molar mass determination of the enriched 28Si crystal
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was to treat the sum of 29Si and 30Si as a virtual element in the sample. Preparing
gravimetrically a blend with a ratio R(30Si/29Si)∼ 1 for calibration and adding a
spike of a highly enriched 30Si crystal to the sample enabled the determination of
the mass fraction of all three isotopes by measuring the amount ratio R(30Si/29Si)
in the original and spiked samples [61–63]. This procedure avoided to explicitly
measure the very small amount ratio R(29Si/28Si) and R(30Si/28Si), which could
hardly be measured with the required precision [61]. With this new approach,
the molar mass of the enriched Si crystal was determined with a fractional
uncertainty of 1.4× 10−9 [45, 64].
The results for the three different spheres produced with the new 28Si crys-

tal differed only by 7× 10−9 NA. The average Avogadro constant value amounts
to NA = 6.022 140 526 (70)× 1023 mol−1 with a relative standard uncertainty of
1.2× 10−8 [45], which is slightly different (by 3.9(2.1)× 10−8, relatively) from the
2015 value for the AVO28 crystal (NA = 6.022 140 76(12)× 1023 mol−1 with a rel-
ative standard uncertainty of 2× 10−8 [43, 44]). Both results thus have fulfilled the
CCM requirement of a relative uncertainty of 2× 10−8 [9]. Their relation to the
Kibble balance determination of the defining constant, h, and contribution to its
final value are discussed in Section 7.5. A summary of the results achieved with
enriched 28Si since 2011 can be found in Ref. [65].
We finally mention that the production of high-quality enriched 28Si crystals

has given a boost not only to future mass metrology but also to other areas in
science, such as quantum information technology, see, e.g. [66].

7.3 The Kibble Balance Experiment

The Kibble balance experiment, see, e.g. [67–72], also provides a direct link
between a macroscopic mass and the Planck constant. It compares mechanic
and electric power, which explains its former label “Watt balance.” The basic
idea for this experiment was first proposed by Kibble [73] and realized by Kibble
et al. at the National Physics Laboratory, NPL, UK [74], and by Olson et al. at
the National Bureau of Standards/National Institute of Technology, NBS/NIST,
Gaithersburg, USA [75, 76].
TheKibble balance experiment is performed in two phases.The principle of the

experiment is illustrated in Figure 7.8. Consider two coils: one (coil 1) carrying
current, I1, is fixed, and the other one (coil 2) carrying current, I2, is movable in
the vertical direction (upper left part of Figure 7.8). The vertical (z) component
of the force imposed on the movable coil, Fz, is given by

Fz = I2
𝜕Φ12

𝜕z
(7.10)

where 𝜕Φ12/𝜕z is the vertical gradient of the magnetic flux generated by the cur-
rent through coil 1. This force can be balanced (force mode) by connecting coil 2
to a balance loaded with an appropriate mass, such thatmg = −Fz (g is the local
gravitational acceleration). Thus,

mg = −I2
𝜕Φ12

𝜕z
(7.11)
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Figure 7.8 Principle of the Watt balance experiment. Source: Göbel and Siegner 2015 [3].
Reproduced with permission of John Wiley & Sons.

In the second phase (velocity mode), the second coil is an open circuit, and the
induced voltage is measured when moving it vertically with a constant velocity,
vz. The induced voltage is given by

U2 = −
𝜕Φ12

𝜕t
= −

𝜕Φ12

𝜕z
𝜕z
𝜕t

= −
𝜕Φ12

𝜕z
vz (7.12)

Combining Eqs. (7.11) and (7.12) then yields

mgvz = I2U2 (7.13)

(The subscript 2 will be abolished in the following text.) This equation equals
mechanic and electric power.
The same result is obtained for a geometry as indicated in the right-hand part

of Figure 7.8 where a coil with wire length L is placed in a horizontal, purely radial
magnetic field Br. 𝜕Φ12∕𝜕z in Eqs. (7.10)–(7.12) is then to be replaced by −BrL.
Since except for the BIPM experiment (see below) the experiment is split

into these two phases, it is actually a virtual comparison of the electrical and
mechanical watt. Note, however, that Eq. (7.10) is only one component of a vector
equation. Neglecting the other components implies tremendous constraints on
the alignment of the experiment.
If the voltage, U , is measured against a Josephson voltage standard, it can be

expressed as (see Chapter 4)

U = C1UJ,1 = C1ifJ,1K−1
J = C1ifJ,1

(
h
2e

)
(7.14)

where i is an integer (Shapiro step number), f J,1 the Josephson frequency, K J the
Josephson constant, andC1 the calibration factor.The current, I, can bemeasured
as the voltage drop across a resistor, R. Measuring the voltage and resistance in
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terms of the Josephson and von Klitzing constants, respectively, then yields

I = U
R

=
C2UJ,2

C3
1
n
RK

=
C2ifJ,2

(
h
2e

)
C3

1
n

(
h
e2

) =
C2

C3
jn e
2
fJ,2 (7.15)

where j and n are integer numbers, j denoting the respective Shapiro step and
n labeling the quantum Hall plateau (filling factor), and RK is the von Klitzing
constant. Combining Eqs. (7.13)–(7.15) yields

m = C
4
fJ,1 fJ,2

h
gvz

(7.16)

where C is a combination of the different calibration factors multiplied with the
integer numbers i, j, and n. Equation (7.16) is the fundamental Kibble balance
equation relating a macroscopic mass to the Planck constant corresponding
to Eq. (7.9) in the Avogadro experiment. Since none of the quantities on the
right-hand side of Eq. (7.16) requires traceability to a mass standard, the Kibble
balance experiment can also serve as a primary realization of the kilogram.
Thus, the quantities to be measured in the Kibble balance experiment are the
Josephson frequencies f J,1 and f J,2; the gravitational acceleration, g; and the
velocity, vz, given the numbers of the Shapiro step i and j and the filling factor n
used in the calibration. For the determination of the Planck constant, the mass
has to be measured as well.
The following are the essential ingredients of a Watt balance experiment (see,

e.g. [68]):

• A suitable balance also allowing the required alignment (a detailed description
of the alignment procedure can be found, e.g. in Refs. [72, 77, 78]).

• Amagnet providing themagnetic flux, which could be a permanentmagnet, an
electromagnet (mostly superconducting solenoids), or a combination of both.

• A setup for the velocity measurement. For this, the movement of the coil is
detected by an interferometer, usually operated in vacuum to avoid uncertain-
ties due to the refractive index of air.

• A Josephson and quantum Hall standards for measuring the current in the
force mode and the voltage induced in the coil in the velocity mode.

• A gravimeter to measure the gravitational acceleration and its spatial profile.

In addition, sensors and actors are required to monitor and control the align-
ment.
At the time of writing, about 10 laboratories had a Kibble balance in operation

or under construction worldwide, including the NIST, the National Research
Council of Canada (NRC), the Swiss Federal Institute of Metrology (METAS),
the Laboratoire National de Métrologie (LNE) of France, the Measurement
Standards Laboratory of New Zealand (MSL), the Korea Research Institute of
Standards and Science (KRISS), the National Metrology Institute of Turkey
(UME), and the BIPM. Though they are based on the same underlying principle
described earlier, they differ in their specific design as described in detail in
recent reviews [68, 69, 71, 72]. As an example, the schematic drawing of the NIST
Kibble balance (NIST-4) is shown in Figure 7.9a [72], and a photo in Figure 7.9b.
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Figure 7.9 (a) Schematic drawing of the NIST-4 Kibble balance [72]. The magnetic field is
generated by a two-disk permanent Sm2Co17 magnet system. Source: Courtesy of NIST. (b)
Photo of the NIST-4 Kibble balance with the vacuum chamber open. Source: Courtesy of NIST.
Photo by Jennifer Lauran Lee/NIST.
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While in the previous version “NIST 3” a superconducting magnet provided the
radial magnetic field, a permanent magnet system is used in NIST-4 generating
a radial field with a flux density of 0.55T. As in the previous versions, a wheel
balance with a test mass of 1 kg is used. Early results of the NIST Kibble (Watt)
balance experiments were reported, e.g. in Refs. [79, 80]. The original NPL
Kibble balance used a beam balance and permanent magnet [74]. Following the
decision of NPL to stop their Watt balance project, the latest version of the NPL
Mark II Watt balance was transferred to the NRC, and the first results were
reported in 2012 [81].
The specific features of the METAS Kibble balance were to separate the force

mode and velocity mode and to use a 100 g test mass instead of 1 kg. Further-
more, a parallel and homogeneous horizontal magnetic field generated by two
flat poles of a SmCo permanent magnet was used [68, 82]. The first results have
been reported by Eichenberger et al. [83].
The LNE Watt balance experiment [84, 85] uses atomic interferometry for

gravimetry [86], a special guiding stage to ensure motion of the coil along
the vertical axis, and a programmable Josephson array associated with a pro-
grammable bias source as voltage reference [87]. Determination of the Planck
constant with the LNE Kibble balance was reported in 2015 and 2017 [88, 89].
The specific approach of the BIPMKibble balance is to carry out the forcemode

and velocity mode simultaneously [90, 91]. A major challenge in this technique
is to separate the induced voltage due to the motion of the coil from the resistive
voltage drop due to the simultaneously flowing balance current. One possible way
to overcome this could be to employ a superconducting moving coil [92]. The
balance current driven through the coil in the force mode would then not cause a
voltage drop, and themeasured voltage solelywould be due to the induced voltage
of the velocity mode.The present activities at BIPM, however, are focused on the
development of a room temperature versionwhich enables both the simultaneous
(one phase) and the conventional two-phase operations [69, 91].
At this end, METAS, NPL, NIST, and NRC have reported values of the Planck

constant with the lowest uncertainty of 9× 10−9 achieved in the NRC experi-
ment [93]. For the sake of completeness, the Joule balance experiment at the
NIM, China, must be included here, although it differs from the Kibble balance
experiments discussed so far. It follows the design of an electrodynamometer and
operates in the force mode only equating the magnetic energy difference and the
gravitational potential energy difference between two known vertical positions of
a coil [94].The electromagnetic force to compensate the weight of the test mass is
created by two coils aligned parallel to each other, which requires the determina-
tion of a mutual inductance between the two coils. A relative uncertainty for the
Planck constant of 2.4× 10−7 has been achieved so far, yet further improvement
seems possible [95].

7.4 The Mole: Unit of Amount of Substance

The mole is the unit of the quantity amount of substance and one of the base
units of the SI, sometimes called the “SI unit of chemists.” It is used to quantify



170 7 7 The SI Kilogram, the Mole, and the Planck Constant

an ensemble of entities in a thermodynamic sense (like in the ideal gas equation
pV = nRT) and to quantify entities in stoichiometric chemical reactions [96]. In
the present SI, the magnitude of the mole is set by the fixed value of the defining
Avogadro constant, NA. A mole thus is the amount of substance of a system that
contains NA specified entities. The previous definition of the mole was based on
a fixed value of the molar mass of 12C,M(12C):

M
(12C) = Ar

(12C)Mu = 0.012 kg mol−1 (7.17)

with Ar(12C) and Mu = 10−3 kgmol−1 being the relative atomic mass of 12C and
themolar mass unit, respectively.This definition linked themole to the kilogram.
In the present SI, this dependence on the kilogram definition is abandoned. How-
ever, as a consequence, the molar mass of 12C is no longer exact but has an uncer-
tainty equal to the uncertainty of the molar mass unit Mu, which at the time of
redefinition was less than 1× 10−9 [97, 98].This, in general, will add only a minor
contribution to the molar mass (M(X)) uncertainty of any atom or molecule X

M(X) = Ar(X)Mu (7.18)

as well as to the most widely usedmethod to determine the amount of substance,
n, through weighing according to

n = m
Ar(X)Mu

(7.19)

The primary realization of the mole with smallest uncertainty, of course, is
through the Avogadro experiment. In practice, however, other primary direct
methods as described, for example, in [98, 99] will generally be applied.Thus, the
daily life of an analytical chemist has not been changed, yet the new definition
adds to the consistency of the new SI and makes clear the distinction between
the quantities of amount of substance and mass; see also [100].

7.5 The CODATA Evaluation of the Value of the Defining
Planck Constant and the Maintenance and Dissemination
of the Kilogram

7.5.1 The CODATA Evaluation and the Final Value of the Defining
Planck Constant, h

The CGPM at its 24th meeting in 2011 invited the CODATA, through its Task
Group on Fundamental Constants to “continue to provide adjusted values of the
fundamental physical constants based on all relevant information available and
to make the results known to the International Community through its Commit-
tee for Units since these values and uncertainties will be those for the revised
SI” [101]. Further the CIPM decided in 2015 [102] that results to be considered
by the CODATA Task Group should be accepted for publication by 1 July 2017.
The CODATATask Group subsequently carried out a special least square adjust-
ment of the values of the physical constants during the summer 2017. The data
and analysis are described in detail in Ref. [103]. The final results of this special
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Figure 7.10 Values of the Planck constant inferred from Kibble balance (KB) and Avogadro
(XRCD) experiments together with the CODATA 2017 value [104]. The labeling represents the
following results: IAC-11 [44], IAC-15 [44], NIST-15 [105], NRC-17 [93], IAC-17 [45, 59], NIST-17
[106], NMIJ-17 [46], LNE-17 [89]. The inner green band is ±2 parts in 108 and the outer gray
band is ±5 parts in 108. Source: © Bureau International des Poids et Mesures. Reproduced by
permission of IOP Publishing. All rights reserved.

adjustment for the defining constants, h, e, k, and NA are reported by the Task
Group in [104].
The results for the Planck constant, h, are depicted in Figure 7.10. Obviously,

these experimental data are not fully consistent within the uncertainties claimed.
To overcome this issue, the CODATA Task Group followed the usual practice by
multiplying the uncertainties by an expansion factor (1.7 in this case) to establish
consistency. With this procedure, the obtained final value for the Plank constant
is [103]

h = 6.626 070 150(69) × 10−34 J s

resulting in a value for the defining constant, h, in the present SI of [104]:

h = 6.626 070 15 × 10−34 J s

The value of the defining constant was rounded choosing the minimum
number of digits, which ensures that the present and previous SI are consistent.
As explained before, the defining constant does not possess an uncertainty.
Instead, the relative uncertainty of the CODATA value of 1.0× 10−8 is transferred
to the IKP. Similarly, 𝜇0, the magnetic constant (permeability of vacuum), which,
according to the definition of the ampere, was constant with zero uncertainty
in the previous SI, will now be a constant to be determined experimentally
with an initial uncertainty given by the uncertainty of the fine-structure
constant 𝛼 [103].
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7.5.2 Realization, Maintenance, and Dissemination of the Kilogram

The subject of maintenance and dissemination of the kilogram is discussed in
detail in Refs. [32, 107, 108] and only can be summarized here.
In the previous SI, the IKP stored at the BIPM was the only experimental

access to the kilogram definition. The present definition of the kilogram does
not imply any particular experiment for its realization. Any method that derives
a mass value traceable to the value of the defining Planck constant (including
the definition of the meter and the second) can be a primary method; see also
Ref. [32]. At the time of writing, the two experiments described in Sections 7.2
and 7.3 proved the capability to realize the kilogram within the required relative
standard uncertainty of a few parts 108. This was also confirmed by a pilot study
organized by the BIPM “Comparison of realizations of the kilogram,” which had
been performed before the redefinition of the kilogram in 2016 and early 2017
[108]. Within this pilot study, a key comparison of the realization of the kilogram
by five participating national metrology institutes, namely, LNE (France), NIST
(USA), NMIJ (Japan), NRC (Canada), and PTB (Germany) took place. The LNE,
NIST, and NRC used the Kibble balance; the NMIJ and PTB used enriched
28Si spheres. The results reported in Refs. [108, 109] showed good agreement.
However, the results for the determination of the Planck constant shown in
Figure 7.10, which were published after the completion of the pilot study, showed
that the individual results are not in agreement within the uncertainties claimed;
the claimed uncertainties of Figure 7.10 are smaller than those claimed in the
pilot study, giving rise to the disagreement. As a result, applying smaller uncer-
tainties, the different realizations of the kilogram would not agree, which would
be unacceptable to ensure a harmonized global mass scale. To resolve this prob-
lem, the CCM suggested that the NMIs operating realization experiments should
disseminate a temporary “consensus value” instead of their own local realization
[110]. This consensus value shall be obtained on the base of key comparisons
according to the regulations of the Mutual Recognition Arrangement of the
CIPM, CIPMMRA [111].
An NMI not operating its own realization experiment may obtain traceabil-

ity from an NMI operating a realization experiment through calibration of their
mass standard as it is common practice in all fields of metrology. Mass dissem-
ination still can be provided by the BIPM with their afore calibrated “ensemble
of reference mass standards” (ERMS) [32, 112] and working standards. A com-
parison of the previous and present traceability chain for the kilogram is shown
in Figure 7.11. As mentioned, the major change is the replacement of the IKP,
which, per definition, had zero uncertainty, by a primary realization of the kilo-
gram (presently the Kibble balance or Avogadro [XRCD] experiments with the
option that other experiments may join), which will result in an uncertainty not
exceeding 10 μg. Further, since the Kibble balance and Avogadro experiments are
in vacuum, a vacuum/air transfer correction must be included. All this results in
an increased uncertainty for the end user, which, however, still satisfies the needs
of advanced calibration laboratories. This is obviously the price to pay for the
universality of the kilogram definition.
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Figure 7.11 Previous and present traceability chain for the dissemination of the kilogram.
Source: After Stock et al. 2017 [107].

A collection of all the relevant publications regarding the present kilogram
definition can be found in The Focus Issue of Metrologia: Realization, Mainte-
nance, and Dissemination of the Kilogram [113].
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8

The SI Kelvin and the Boltzmann Constant

The previous definition of the unit of thermodynamic temperature, kelvin, was
based on a material artifact, namely, the triple-point-of-water (TPW) tempera-
ture. The TPW is the temperature (273.16K) and pressure (611.73 Pa) where all
three phases of water, that is, liquid, solid (ice), and vapor, coexist.Though ideally
the TPWcan be considered a constant of nature, its precise temperature depends
on many parameters, such as isotopic composition, purity, which are often dif-
ficult to quantify precisely. Nevertheless, according to the previous definition of
the kelvin, the temperature of the TPW has always been exactly 273.16K with no
uncertainty. In the present SI, the TPW temperature is a quantity to be measured
with an initial uncertainty equal to the uncertainty of the Boltzmann constant
before defining its value. The effect of isotope composition had been considered
in the previous kelvin definition by defining the sort of water to be used [1]. Keep-
ing in mind that the determination of isotope ratios also exhibits uncertainties
and that purity and its temporal variation are very difficult to specify absolutely,
it is obvious that we had been at a situation which was not so different from the
previous kilogram definition via the International Kilogram Prototype, IKP. The
realization of the kelvin according to the previous definition through the TPW
temperature was possible with an uncertainty of one part in 107.
In the present SI, the definition of the kelvin by a material artifact is abolished.

Instead it is defined by the fixed value of the defining Boltzmann constant, k.
Since, in the fundamental statistical laws of physics, temperature in any case
appears as thermal energy, kT , it was natural to take the Boltzmann constant, k,
as the defining constant, as decided by the 26th General Conference on Weights
and Measures (CGPM) in 2018 [2]. Earlier the conditions for the determination
of the Boltzmann constant as specified by theComité consultatif de thermométrie
(CCT) of the International Committee for Weights and Measures (Comité Inter-
national des Poids etMesures) (CIPM), [3] had been fulfilled as shown below.The
CCT had requested that an uncertainty of the order of 1× 10−6 must be achieved,
including at least two fundamentally different methods of primary thermometry
with a relative standard uncertainty not larger than three parts in 106.
The present definition of the kelvin links the unit of temperature to the unit

of energy, the joule (1 J = 1 kgm2 s−2). The unit of temperature is thus indepen-
dent of a particular temperature in contrast to the previous definition. This is

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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of advantage when realizing and disseminating the kelvin at very high and low
temperatures.
In the following section, we discuss some of the primary thermometers that

have been the major pillars for the precise determination of the Boltzmann con-
stant and hence will be the obvious choice for the realization of the kelvin [4]. For
more detailed reviews, the reader is referred to Refs. [5, 6].

8.1 Primary Thermometers

For primary thermometers, the relation between the measurand and the ther-
modynamic temperature is explicitly known or calculable with the necessary
uncertainty and does not contain any other temperature-dependent quantities
and constants. The most common primary thermometers relevant for the
determination of the Boltzmann constant and the realization of the kelvin in the
present SI are based on thermal equations of state, such as the constant volume
gas thermometer (CVGT), the refractive index gas thermometer (RIGT), and
the dielectric constant gas thermometer (DCGT). Another gas thermometer
based on measuring the speed of sound, the acoustic gas thermometer (AGT),
had received great attention in view of a precise determination of the Boltzmann
constant [7]. We shall briefly describe DCGT and AGT as well as radiation
thermometers (total radiation as well as spectral radiation). In the frame of
quantum metrology, noise thermometers and thermometers based on molecule
absorption spectroscopy (Doppler broadening thermometry, DBT) as well as
Coulomb blockade thermometers (CBTs) will be considered finally. Other pri-
mary thermometers, which had been of less relevance for the determination of
the Boltzmann constant, such as magnetic thermometers, will not be discussed
here, but the reader is referred to the respective literature [8, 9].
The base formany primary thermometers is given by the thermal state equation

for ideal gases:

pV = nRT = NkT (8.1)

where p, V , and T are the state variables for pressure, volume, and temperature,
respectively; n is the amount of substance; N is the number of particles; and R is
the universal gas constant,R= kNA (NA is the Avogadro constant; see Chapter 7).
Even though in particular noble gases behave approximately like ideal gases at the
TPW temperature, for a precise determination of the Boltzmann constant even
the smallest deviations from the ideal gas behavior had to be considered. This is
usually accomplished by determining experimentally at a constant temperature
the dependence of the measurand (e.g. pressure) on the density of the gas. These
isotherms are then fitted according to a virial expansion

pV = nRT(1 + B(T)∕Vm + C(T)∕V 2
m + · · ·) (8.2)

and extrapolated to zero density. B(T) and C(T) in Eq. (8.2) are, respectively,
the second and third density virial coefficients, and Vm is the molar volume,
Vm = V /n. For absolute isotherm CVGT, a constant volume is subsequently
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filled with different amounts of gas at constant temperature to obtain different
pressures. From a plot of (pV)/n versus 1/Vm, the product RT is then directly
obtained according to Eq. (8.2). However, we will not discuss CVGT any further
because the achievable uncertainty seems to be limited to a few parts in 105 [7].

8.1.1 Dielectric Constant Gas Thermometry

DCGT is based on the Clausius–Mossotti relation relating the relative dielectric
constant of a gas, 𝜀r, to its static electric polarizability, 𝛼0, according to

𝜀r − 1
𝜀r + 2

= N
V
𝛼0

3𝜀0
(8.3)

where 𝜀0 is the electric constant. Replacing the number density (N/V ) in Eq. (8.3)
using the state equation of the ideal gas (Eq. (8.1)), considering that 𝜀r𝜀0 = 𝜀, and
approximating 𝜀r + 2≈ 3 as valid for ideal gases yields

p =
kT(𝜀 − 𝜀0)

𝛼0
(8.4)

The dielectric constant 𝜀 is determined by capacity measurements. Accordingly,
in the DCGT experiment, the pressure dependence of the capacitance of a capac-
itor containing the measuring gas at the TPW temperature must be measured.
However, in addition, the polarizability, 𝛼0, must be known with the required
uncertainty. This is fulfilled for 4He, where ab initio quantum electrodynamics
(QED) calculations for 𝛼0 have meanwhile achieved an uncertainty well below
10−6 [10], and recent experiments have confirmed this on an uncertainty level of
2 parts per million [11]. As already said earlier, for a precise determination of k,
deviations from the ideal gas behavior must be considered. Combining the virial
expansion (Eq. (8.2)) with the Clausius–Mossotti relation (8.3) then yields [7]

p ≈
𝜒

3A
𝜀

RT
+ 𝜅eff

[
1 + B(T)

(3A
𝜀
)
𝜒 + C(T)

(3A
𝜀
)2
𝜒

2 +…
]

(8.5)

where 𝜒 = (𝜀/𝜀0 − 1) is the dielectric susceptibility, A
𝜀
= NA 𝛼0/3𝜀0 is the molar

polarizability, and 𝜅eff is the effective compressibility of the capacitor used to
measure 𝜒 , considering changes of its dimension with pressure [12]. The relative
change of the capacitance is given by

C(p) − C(0)
C(0)

= 𝜒 + 𝜀

𝜀0
𝜅effp (8.6)

where C(p) and C(0) are, respectively, the capacitance of the gas-filled and
evacuated capacitor. The relative change is then measured at constant temper-
ature. From a polynomial fit of the plot of p versus C(p) − C(0)∕C(0) at the
TPW temperature, 3A

𝜀
/RTTPW and thus the Boltzmann constant k are obtained.

A schematic sketch of the DCGT setup used at the Physikalisch–Technische
Bundesanstalt (PTB) (National Metrology Institute of Germany) is shown in
Figure 8.1.
Because of the very small susceptibility of gases (e.g. forHe at the TPW temper-

ature and 0.1MPa 𝜒 ≈ 7× 10−5), these measurements are extremely demanding
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Figure 8.1 Schematic sketch of the DCGT setup used at PTB [13]. Source: © Bureau
International des Poids et Mesures. Reproduced with permission of IOP Publishing. All rights
reserved.

as they require audio-frequency capacitance bridges providing uncertainties of a
few parts in 109 [14] and pressure measurement up to 7MPa with a relative stan-
dard uncertainty of order one part in 106.Themost recent value of the Boltzmann
constant obtained with PTB’s DCGT experiment at the TPW has an estimated
relative standard uncertainty of 1.9× 10−6 [15]. For a more detailed description
of the DCGT experiment, see Ref. [13].

8.1.2 Acoustic Gas Thermometry

Acoustic gas thermometry (AGT) [16] applies a resonance method to measure
the low-pressure speed of sound. It is based on the two relations valid for an ideal
gas:

1
2
mv2rms =

3
2
kT (8.7)

and

v2rms =
3
𝛾0
u2
0. (8.8)

In Eq. (8.7), m is the mass of the atom and v2rms its root-mean-square velocity.
Equation (8.7) thus relates the kinetic energy of an atom to its thermal energy kT .
Equation (8.8) then relates v2rms to the zero-frequency speed of sound of the gas,
u0, where 𝛾0 = cp/cv is the zero-pressure limit of the ratio of specific heat capac-
itance at constant pressure (cp) and constant volume (cv). Combining Eqs. (8.7)
and (8.8) and replacing the mass of an atom by the molar mass, M, of the gas
divided by the Avogadro constant,m =M/NA, yield

k =
Mu2

0

𝛾0NAT
(8.9)
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For amonatomic gas, 𝛾0 = 3/5.TheAvogadro constant,NA, is fixed in the present
SI but had an uncertainty in the previous SI of 1.2× 10−8 according to Committee
on Data for Science and Technology (CODATA) [17]. When the experiment is
performed at the TPW temperature, the molar mass,M, and the speed of sound,
u0, must be measured to determine k.
Argon and helium have been used in the AGT experiments. Since Ar has

three stable isotopes, 40Ar, 36Ar, and 38Ar (in total, 23 isotopes of Ar are known),
quantifying its isotopic composition and purity (chemical composition) is
challenging in molar mass determination. A detailed study of the molar mass
determination can be found in, for example, [18, 19]. The speed of sound is
measured in an acoustic resonator. Today, spherical or almost (quasi-)spherical
resonators (see, e.g. [18, 20, 21]) and cylindrical resonators [22] are used. While
in the early high-precision experiments [20, 21], the resonator was filled with
high-purity mercury to estimate its geometric dimensions (volume), microwave
resonances of the same resonator are now frequently used to determine its
dimension [23]. Quasi-spherical resonators are more advantageous compared to
perfect spherical resonators because the otherwise degeneratemicrowavemodes
are then partly resolved, allowing a better determination of the dimensions and
their thermal variation [24]. Together with the measured frequencies of the
acoustic resonances, the speed of sound is then derived. A photo of an AGT
resonator is shown in Figure 8.2.

Figure 8.2 Photo of the
assembled National Physics
Laboratory (NPL) 1 l copper
AGT resonator. Source:
Reproduced with permission
of NPL Management Limited.
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AlthoughAGT had already been applied in the late 1970s to determine the uni-
versal gas constant [25], the first high-precision determination of the Boltzmann
constant using AGT was reported by Moldover et al. [20, 21] using a stainless
steel spherical resonator, in which the uncertainty of the value of the Boltzmann
constant was reported to be 1.8× 10−6. More recent experiments have confirmed
that uncertainties at the 10−6 level can readily be obtained [5, 18, 19, 26, 27].
Experiments using He instead of Ar have been reported, e.g. in Refs. [28–32].
The smallest relative uncertainty so far of 0.6× 10−6 was achieved using 4He in
a quasi-spherical resonator [32]. By combining this latest result with the former
data, the uncertainty could be further reduced to 0.56× 10−6 [32]. Cylindrical,
instead of spherical, resonators have been employed in the experiments of the
National Institute of Metrology (NIM), China [22, 33, 34]. Combing their experi-
mental results, a relative standard uncertainty for k of 2× 10−6 has been achieved
[34]. Overall, the AGT experiments have made considerable progress over the
last decade and have been a major pillar for the determination of the value of the
defining constant k for the kelvin.

8.1.3 Radiation Thermometry

For absolute radiation thermometry (RT), blackbody radiators are used. Black-
body radiators are primary sources of electromagnetic radiation linking directly
the spectral and total radiance to temperature. Note that synchrotrons can also
act as primary radiation sources [35] and are successfully used to realize the pri-
mary scale for the spectral radiance from the visible to X-ray spectral regime.
However, synchrotron radiation cannot be employed for absolute RT or for the
determination of the Boltzmann constant because of the missing link to temper-
ature.
Absolute thermometers based on blackbody radiometers measure the spectral

radiance as a function of frequency, L
𝜈
(𝜈, T), or the frequency integrated total

radiance, L(T). The temperature dependence of the spectral radiance of a black-
body radiator is described by the Planck law [36]:

L
𝜈
(𝜈,T) = 2h

c2
𝜈
3
[
exp

(
h𝜈
kT

)
− 1

]−1
(8.10)

The total radiance is given by the Stefan–Boltzmann law:

L(T) =
∫

∞

0
L
𝜈
(𝜈,T)d𝜈 = 𝜎

π
T4 (8.11)

with the Stefan–Boltzmann constant:

𝜎 = 2𝜋5k4
15c2h3

(8.12)

An ideal blackbody absorbs all incoming radiation regardless of its frequency
and angle of incidence. Its absorptivity and emissivity equal 1, and the emis-
sion spectrum as described by Eq. (8.10) is the maximum possible radiance at a
given frequency and temperature. The challenge for the construction of black-
body radiators is to meet the ideal conditions as close as possible. Blackbod-
ies usually consist of a cavity with a small hole. The inner surface of this cavity
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is covered with a suitable material. The choice of the material depends on the
temperature and frequency considered. The blackbody radiators developed at
the Physikalisch–Technische Reichsanstalt (PTR) by Lummer andKurlbaum [37]
allowed at that time an unprecedented precise determination of their emission
spectrum and paved the way for the Planck law.
Precise absolute RT became possible only through the development of cryo-

genic radiometers [38, 39]. Cryogenic radiometers are electrical substitution
calorimeters where the heating by the incoming radiation is compared to an
equal electrical heating. Operating the radiometer at cryogenic temperatures
(usually using liquid He), compared to room temperature, results in a con-
siderable increase in sensitivity and accuracy (e.g. due to the much smaller
heat capacity and hence increased thermal diffusivity of the used material [e.g.
Cooper]) as well as smaller radiation losses and background radiation [38].
In practice, RT does not detect the total radiation emitted into a complete
hemisphere but only the radiation passing through a suitable aperture system.
Consequently, additional sources of error relate to its temperature, geometry,
and diffraction effects [38].
Spectral radiometry, compared to total radiometry, has the advantage that it

can select and restrict the frequency to themaximumof the emission spectrumof
the blackbody. For the determination of k with the smallest possible uncertainty
in the previous SI, the operating temperature should have been at the TPW or
close to it.
With all these restrictions, RT did not achieve the uncertainties required to

contribute to the final value of the Boltzmann constant; however, with the present
definition of the kelvin, spectral radiometry will play an important role in the
dissemination of the high-temperature scale [4].

8.1.4 Doppler Broadening Thermometry

Doppler broadening of spectral emission or absorption lines of atomic or molec-
ular gases has already been discussed in Chapter 3. The Doppler effect for elec-
tromagnetic waves accounts for the frequency change when source and detector
move relative to each other. For an atom or molecule with a resonance frequency
𝜈0 moving with velocity (speed), s, toward a tunable laser source at rest, absorp-
tionwill take place when the frequency of the laser, 𝜈′, is shifted to the red accord-
ing to (neglecting the second-order Doppler effect)

𝜈
′ = 𝜈0

(
1 − s

c

)
(8.13)

Considering next a gas at low pressure in thermal equilibrium at a given
temperature, the velocity distribution of the atoms or molecules then will be
described by the Maxwell–Boltzmann distribution proportional to exp[−(s/s0)2]
where s20 = 2kT∕m with m being the mass of the atom or molecule. This
transforms into a Gaussian absorption profile with half width, Δ𝜈D:

Δ𝜈D
𝜈0

=
(
2kT
mc2

)1∕2

(8.14)



188 8 The SI Kelvin and the Boltzmann Constant

Frequency
tuning

Thermostat

Absorption cell

Absorption spectrum

Laser frequency

Δ

ν0

Detector

Frequency
stabilization

Intensity
stabilization

Iin Iout

Iout

Laser

Figure 8.3 Schematic of the laser spectrometer setup for DBT. Source: Göbel and Siegner 2015
[42]. Reproduced with permission of John Wiley & Sons.

The relative mass of the respective ion can be measured with small uncertainty
(of order 10−9 or better) using Penning traps. Conversion to absolute masses
requires knowledge of theAvogadro constant (relative uncertainty in the previous
SI according to CODATA u = 1.2× 10−8 [17]), or, alternatively, an independent
measure of the mass of the ion or molecule is needed. If the experiment is then
performed at a known temperature, for example, at the TPW, the Boltzmann
constant can be determined by measuring frequencies. This proposal was first
made by Bordé [40], and an experimental proof of principle was demonstrated
by Daussy et al. [41].
A laser spectroscopy setup as used for DBT is schematically shown in

Figure 8.3. Key features of the setup are (i) the stabilized, frequency tunable laser
systemwhose frequency is traced back to the SI unit, for example, by employing a
femtosecond frequency comb (see Section 9.1.1); (ii) the temperature-stabilized
absorption cell containing the molecular gas; and (iii) the detection system. The
laser system of choice, of course, depends on the gas and its spectral feature used
for the experiment. A rovibrational absorption line of the ammonia molecule
14NH3 at the frequency of 28 953 694MHz and a CO2 laser stabilized to an
absorption line of OsO4 were used in the initial demonstration of DBT [41]. The
absolute laser frequency (linewidth <10Hz) was measured by comparison with
a Cs fountain clock (see Section 3.3). Tunability of the laser source had been
achieved by electro-optic sideband modulation.
A component (R12) of the 𝜈1 + 2𝜈02 + 𝜈3 combination band of CO2 (𝜈1 and 𝜈3 are

the symmetric and antisymmetric stretching modes, respectively, and 𝜈02 is the
bendingmode) and an external-cavity diode laser emitting at 2.006 μm(linewidth
∼1MHz) were used by Casa et al. [43, 44]. Further, a rovibrational absorption
line in 13C2H2 was investigated by Koichi et al. using a tunable diode laser locked
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to a frequency comb [45], and a line at 1.39 μm in the 𝜈1 + 𝜈3 band of H2
18O

was measured using a pair of offset-frequency-locked external-cavity diode
lasers [46].
The DBT experiment naturally requires the best achievable control of the gas

temperature. To keep the uncertainty of the temperature measurement as small
as possible, the temperature of the TPW or close to it had been used for the
determination of k. The French group, for example, used an ice-water-filled ther-
mostat, keeping the temperature at 213.15K [41, 47, 48]. A gas cell included in a
temperature-controlled thermal shield, surrounded by a cooled enclosure under
vacuum, was used in the experiments of the Italian group [43, 44], allowing a
variation of the gas temperature between 270 and 330K.
When fitting themeasured absorption profile to determine the Doppler broad-

ening, other line broadening (or narrowing) mechanisms must be considered
such as the contribution of the Lorentzian-shaped homogeneous linewidth (see
Section 3.3), the second-order Doppler effect, the Lamb–Dicke narrowing, the
possible overlap with neighboring absorption lines, and collision broadening (for
a detailed lineshape analysis, see, e.g. Refs. [49–53]).
The smallest uncertainty of the value of the Boltzmann constant measured by

DBT has been of the order of some 10 ppm [46, 47, 50]. Major limiting factors are
the line shape model, statistical fluctuations, and the spectral purity of the probe
laser. Recent development of a new spectrometer based on quantum cascade
lasers [54] leaves room for further improvements for the ammonia experiments.
Though not yet listed in the present Mise en pratique for the definition of the
kelvin [4] as a primary thermometer, DBT will have the potential for dissemina-
tion of the kelvin.

8.1.5 Johnson Noise Thermometry

Johnson noise thermometry (JNT) is based on the Nyquist relation [55]⟨U2⟩ = 4kTRΔf (8.15)

relating the mean square noise voltage of a resistor, ⟨U2⟩, to its resistance,
R, the Boltzmann constant, and temperature. Δf is the frequency bandwidth.
Equation (8.15) is a high-temperature approximation valid for frequencies
f ≪ kT/h. As the noise voltage is generated by the thermal motion of the
electrons in the resistor, the statistical nature of this mechanism requires
sufficiently long measuring times, t, depending on the uncertainty required. For
the determination of a certain temperature, this is quantified by the relation

ΔT
T

≈ 2.5√
tΔf

(8.16)

According to Eq. (8.16), for example, at a bandwidth of 20 kHz, a measurement
time of several weeks is required to obtain an uncertainty of order 10−5. Given the
very small noise voltages, this long measurement time is naturally causing con-
siderable problems such as the stability of the electronic devices and extra noise
sources (e.g. amplifiers, leads). Thus, the determination of an unknown temper-
ature is usually done by comparing the mean square noise voltage of the resistor
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Figure 8.4 Schematic block diagram for the switched-input noise correlator: (a) shows the
conventional relative method and (b) the absolute method employing a quantum voltage
noise source (V r) as the reference. Source: Fischer 2010 [8]. Reproduced with permission of
John Wiley & Sons.

with that of a resistor at a known reference temperature, T0, at equal bandwidth.
At present, the switched-input digital correlator technique is frequently used for
these measurements [56, 57].
In this correlator, the signals stemming from the two channels are digitized,

and the required operations (averaging, multiplication) are done by software.
Thus, amplifier noise, noise of the leads, and drift are eliminated. For relative tem-
perature measurement (see Figure 8.4a), the unknown temperature, TS, is then
obtained by

TS =
⟨U(TS)2⟩⟨U(T0)2⟩ R(T0)

R(TS)
T0 (8.17)

Absolute temperature measurements and the determination of the Boltzmann
constant, however, require the reference resistor to be replaced by a voltage
standard (see Figure 8.4b). This has been implemented in a cooperation led
by the National Institute of Standards and Technology (NIST) by employing
pulse-driven AC Josephson standards (see Section 4.1.4.4) as quantized voltage
noise sources (QVNSs) [58–61].The JosephsonQVNS is a Σ–Δ digital-to-analog
converter producing a sequence of pulses with the quantized pulse area

∫
U(t)dt = nK−1

J (8.18)

whereK J is the Josephson constant,K J = 2e/h (see Chapter 4). AnM-bit long dig-
ital code is then used to synthesize a waveform composed of a series of harmonics
of the pulse pattern repetition frequencywith equal amplitude but randomphase.
This results in a pseudo-random noise waveform with calculable power spectral
density and thus pseudo-noise voltage spectral density, UQVNS:

UQVNS = K−1
J Qm(Mf S)1∕2 (8.19)

withm being the number of Josephson junctions,M the number of bits that deter-
mine the length of the digital waveform, and f S the clock frequency. Note that
M is proportional to the clock frequency f S (and to the inverse of the spacing
between the harmonic tones that make up the noise waveform) [62] so that the
voltage generated by the pulse-driven Josephson array is proportional to the clock
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frequency, as discussed in Section 4.1.4.4. Q is a dimensionless amplitude factor
[62]. Comparing the mean square noise voltage spectral density of the thermal
resistor ⟨U2(T)/Δf ⟩ to the mean square pseudo-noise voltage spectral density
using again a switched-input digital correlator (see Figure 8.4b) yields⟨U2(T)∕Δf ⟩⟨U2

QVNS⟩ = 4kTR
K−2
J Q2m2MfS

(8.20)

Measuring the resistance in units of the von Klitzing constant, R = XRRK, the
absolute temperature is obtained according to

T =
⟨U2(T)∕Δf ⟩⟨U2

QVNS⟩
hQ2m2MfS
16kXR

(8.21)

Performing the measurement at the TPW allows the determination of the
Boltzmann constant, as demonstrated by Benz et al. [62], who reported the
relative uncertainty to be 12 parts in 106. With an improved setup at NIST, a new
determination of the Boltzmann constant achieved a combined standard uncer-
tainty of 5.0× 10−6 [63]. Further, in a cooperation between the NIST and NIM,
a JNT system has been established at the NIM [64] with a first determination
of the Boltzmann constant with a combined relative uncertainty of 3.9× 10−6
in 2015 [65]. New measurements with a further improved system at the NIM
resulted in an improved relative uncertainty of 3× 10−6 [66], thus fulfilling
the requirement of the CCT [3]. As analyzed in [67], one main uncertainty
component is caused by the frequency–response mismatch between the two sets
of leads connecting the sources with the amplifiers. A JNT quantum standard has
also been developed at the Japanese NMIJ/AIST (NationalMetrology Institute of
Japan/National Institute of Advanced Industrial Science and Technology) with
first results reported in 2017 [68]. Altogether, JNT absolute quantum standards
have improved considerably and contributed to the determination of the final
value of the Boltzmann constant (see Section 8.2.1) and are very attractive to
realize and disseminate the low-temperature scale [69].

8.1.6 Coulomb Blockade Thermometry

Although Coulomb blockade thermometry [70, 71] is not yet referred to as a
primary thermometer in the Mise en Pratique for the definition of the kelvin
[4], we briefly describe it here in the context of quantum standards. CBT is a
low-temperature technique (T < 4K) based on the current–voltage characteris-
tic of metallic single-electron transport (SET) transistors fabricated, for example,
based on (Al/AlOx) tunnel junctions (see Section 6.1). Because of the Coulomb
blockade, the differential conductance, dISD/dUSD, exhibits a dip around zero
source–drain voltage (see Figure 8.5).The characteristic parameter for the occur-
rence of this dip is the ratio of the Coulomb energy

Ec =
e2
C∑ (8.22)
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Figure 8.5 Schematic illustration of the differential conductance (b) of an SET transistor (a) in
the weak Coulomb blockade regime. Source: Göbel and Siegner 2015 [42]. Reproduced with
permission of John Wiley & Sons.

where CΣ is the total capacitance of the SET transistor, to the thermal energy
kT . The Coulomb blockade is very pronounced for EC≫ kT , resulting in a wide
and deep dip in the differential conductance. With increasing temperature, this
dip broadens and its depth decreases. In the temperature regime where EC is
comparable to or even smaller than kT (respectively, intermediate and weak
Coulomb blockade regimes), the half width of the conductance dip depends
solely on the temperature. For an SET array with N tunnel junctions, the
half width (in the first order) in the weak Coulomb blockade regime is given
by [70]

ΔV1∕2 ≅ 5.44N kT
e

(8.23)

For a one SET transistor with one metallic island and two tunnel junctions (one
on either side of the island), the half width is then equal to 10.88 kT/e. One of the
limiting factors for the accuracy is the inevitable spread of the junction parame-
ters [72]. To reduce this, many sophisticated junction arrays have been realized
[73–75]. The uncertainties that have been achieved so far are of the order 10−4
[71, 73, 74] and operation at temperatures down to 10mKhas been demonstrated
[76]. CBTs based on Si Schottky barriers have also been fabricated and tested [77].
Finally, we mention another low-temperature electronic thermometer using

tunnel elements and measuring the voltage generated in these elements in the
shot noise regime (shot noise thermometer, SNT) [78, 79].
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8.2 The CODATA Evaluation of the Value of the Defining
Boltzmann Constant, Realization and Dissemination
of the New Kelvin

8.2.1 The CODATA Evaluation of the Final Value of the Defining
Boltzmann Constant

As requested by the CGPM at its 24th meeting [80], the CODATA through
its Task Group on Fundamental Constants carried out a special least square
adjustment of the values of the physical constants during the summer 2017. The
data and analysis are described in detail in Ref. [81]. The results of this special
adjustment for the defining constants h, e, k, and NA are reported by the Task
Group in Ref. [82] and are depicted in Figure 8.6 for the Boltzmann constant.
The major contributions come from AGT. JNT (NIM/NIST-17) and DCGT

(PTB-17) each had one data input. The CODATA value 2017 for k was deter-
mined to be [82]

k = 1.380 649 03(51) × 10−23 J K−1

The relative standard uncertainty amounts to 3.7× 10−7. From this result, the
value of the defining Boltzmann constant was deduced [82]:

k = 1.380 649 × 10−23 J K−1

6.44 6.46

JNT

DCGT
NPL-10 (Ar)

NIST-88 (Ar)

LNE-09 (Ar)

LNE-11 (Ar)

LNE-15 (He)

LNE-17 (He)

PTB-17 (He)

NPL-17 (Ar)

NIM-17

NIM/NIST-17
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AGT

6.48

[k/(10–23 J/K) – 1.380] × 104

6.5 6.52 6.54

6.44 6.46 6.48 6.5 6.52 6.54

Figure 8.6 Values of the Boltzmann constant contributing to the final value of the defining
constant, k, in chronological order together with the CODATA 2017 value [82]. The labeling
refers to the following references: NIST-88(Ar): [21], LNE-09(Ar): [26], NPL-10(Ar): [83],
LNE-11(Ar): [15], LNE-15(He): [31], INRIM-15(He): [29], LNE-17(He): [32], NPL-17(Ar): [19],
PTB-17(He): [15], NIM-17: [34], NIM/NIST-17: [66]. The inner green band is ±5 parts in 107 and
the outer gray band is ±15 parts in 107. Source: © Bureau International des Poids et Mesures.
Reproduced by permission of IOP Publishing. All rights reserved.
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The number of digits has been chosen such that the triple point of water
temperature, TTPW, remains 273.16K, yet, now with an uncertainty of
about 0.4mK [1].

8.2.2 Realization and Dissemination of the Kelvin

Realization and dissemination of the kelvin can be accomplished by absolute pri-
mary thermometers. Presently, the following are listed in the Mise en Pratique
for the Definition of the Kelvin [4]: AGT, radiometric thermometry, polarizing
gas thermometry (dielectric-constant gas thermometry (DCGT), refractive index
gas thermometry (RIGT)), and JNT. For practical realization of the kelvin, the
CIPM has adopted a series of International Temperature Scales, the latest being
the International Temperature Scale of 1990 (ITS-90) and the Provisional Low
Temperature Scale PLTS-2000.These scales are set up by defining exact fix-point
temperatures for the respective scale temperature.The ITS-90 is valid for temper-
atures from 0.65K upward and the PLTS-2000 from 0.9mK to 1K. Both scales
will remain in use in the foreseeable future for practical reasons. The present
definition of the kelvin in terms of the Boltzmann constant does not affect the
temperature values or realization uncertainties of the International Temperature
Scales. Guides for the realization of the ITS-90 and estimates of the difference
between thermodynamic temperature and the ITS-90 as well as for the realiza-
tion of the PLTS-2000 can be found on the International Bureau for Weights and
Measures (Bureau International des Poids et Mesures) (BIPM) website [84].
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9

Beyond the Present SI: Optical Clocks and Quantum
Radiometry

In this section, we present some recent progress in metrology research, which in
due time may result in a change of the defining constant of the base unit second
and an alternative realization of the radiometric quantities and hence a change
of the defining constant for the photometric base unit of luminous intensity, the
candela. Regarding the second, optical clocks meanwhile have reached stability
and accuracy superior to the microwave Cs clock. Therefore, a new definition
of the second in terms of an optical transition frequency is feasible. We sketch
some recent developments on optical clocks in Section 9.1 including femtosec-
ond frequency combs for optical frequency measurements. Further, we briefly
summarize results on optical clock applications to study possible variations of
the fine-structure constant, 𝛼, in Section 9.1.5. Another exciting development in
metrology research is the now availability of single-photon sources paving the
way to base radiometric quantities, such as spectral radiative power, luminous
flux, and luminous intensity, the candela, on counting of single photons with
given energy (frequency). Single-photon emitters as the key elements of future
quantum radiometry are discussed in Section 9.2.

9.1 Optical Clocks and a New Second

Since the short-term stability of a frequency standard scales with the quality
factor,Q, of the respective transition (see Eq. (3.8)), it would be favorable tomove
the “clock transition” to higher frequencies than presently used in the Cs clocks.
Moving to the visible range of the electromagnetic spectrum at several hundred
THz would, in principle, result in an improvement of as much as 105 compared
to the 9.2GHz frequency of the microwave clock transition in Cs provided the
linewidth remains the same. This, in fact, has driven the development of optical
frequency standards. The remarkable and still ongoing progress in recent years
now justifies calling some of these standards “optical clocks,” i.e. they exhibit
sufficiently long operation times to establish or a least contribute to a timescale
[1–4]. However, these exciting developments can again only be touched here. For
further reading see, for example, [5–8]. It has been particularly the development
of advanced laser cooling and trapping techniques for both neutral atoms and
ions, which promoted the development of optical clocks. One of the essential

The New International System of Units (SI): QuantumMetrology and Quantum Standards,
First Edition. Ernst O. Göbel and Uwe Siegner.
© 2019Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 byWiley-VCH Verlag GmbH & Co. KGaA.
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requirements for suitable atoms or ions is the presence of a strong dipole-allowed
optical transition (e.g. S→P) for laser cooling together with a transition with
narrow homogeneous (sometimes also called “natural”) linewidth since the
more narrower the linewidth the more precise a determination of the line
center frequency is possible. The half width of the homogeneous, i.e. Lorentzian
shaped, optical transition, Δ𝜈, is determined by the phase relaxation time, T , of
the coherent polarization created by the driving laser field

Δ𝜈 = 1
2πT

(9.1)

with T given according to
1
T

= 1
2T1

+ 1
T2

(9.2)

whereT1 is the population lifetime andT2 accounts for all other phase relaxation
processes such as collisions. For pure recombination damping, we have T = 2T1.
Consequently, narrow linewidth requires long excited-state lifetime as it

is the case, for example, for dipole-forbidden optical transitions (e.g. S→D
[quadrupole transition], S→ F [octupole transition]), or appropriate intercom-
bination transitions. Intercombination transitions involve a change of the spin
state (ΔS≠ 0; e.g. singlet→ triplet). They are forbidden since the electric field
cannot induce a spin flip. This is strictly true for light atoms, but for heavier
atoms, the transitions become weakly allowed due to spin–orbit coupling.
For the choice of the atom or ion species, several, sometimes contradicting,

issues must be considered, such as energy of the respective transitions and acces-
sibility by available stable laser systems, robustness against external perturbations
like magnetic and electric fields, and so on.
The principle of operation (Figure 9.1) of an optical clock is very similar to

that of a microwave clock (see Chapter 3). A sufficiently stable local oscillator
realized by a narrowband laser source (see, e.g. [10, 11]) is needed to perform

State
preparation

Local
oscillator

Counter

Output signal

Servo
system

Spectroscopy
atoms or ion

Detector

Figure 9.1 Principle of operation of an optical clock. Source: Göbel and Siegner 2015 [9].
Reproduced with permission of John Wiley & Sons.
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spectroscopy of the atoms or ions that have been prepared, for example, by laser
cooling and trapping. During the spectroscopy phase, the state preparation sys-
tem is generally switched off to avoid perturbations. Fluorescence is used for
detection in most cases providing the internal state information and thus the
feedback signal for the local oscillator. In most cases, fluorescence is excited and
detected on an auxiliary transition that is connected selectively to the ground
or excited state of the clock reference transition. By providing many photons
per atom and interrogation cycle, this method provides a large gain in detection
sensitivity. Femtosecond frequency combs are finally used as frequency dividers
providing the microwave output signal.
For the spectroscopy, high-resolution techniques such as free-space saturated

absorption [12–14] and free-space Bordé–Ramsey atom interferometry are used.
For trapped atoms within the Lamb–Dicke regime (see Section 9.1.2), pulsed
laser excitation with a single pulse (Rabi) or multiple pulses (Ramsey) is used.
In Rabi excitation, in each interrogation cycle a single π-pulse is used to reso-

nantly drive the respective clock transition. In Ramsey excitation, two subsequent
π/2-pulses separated by a dark interval are used (c.f. Section 3.1). While Ramsey
excitation provides narrower Fourier-limited linewidth than Rabi excitation, it
usually requires higher laser intensity.
For saturated absorption spectroscopy, two counterpropagating laser beams

with the same frequency are directed into the atom cloud. Due to the Doppler
effect, atoms with different velocities with respect to the beam directions are
probed if the laser is tuned slightly off resonance. If, for example, the laser is
detuned toward lower frequencies with respect to the resonance frequency,
absorption can occur only if atoms with suitable velocity move opposite to the
direction of the laser beam; thus, while one of the laser beams will be absorbed
by the atoms with a velocity component +v in the direction of the laser beams,
the other beam will be absorbed by the atoms with −v. Only when the laser
frequency is exactly at resonance, the same subgroup of atoms with zero velocity
component in the beam directions will be addressed. Since both beams must
share the atoms for absorption, total absorption will be reduced and a dip in
the absorption profile occurs. Under ideal conditions, the spectral width of this
so-called Lamb dip can approach the natural linewidth of the transition.
The Bordé–Ramsey atom interferometry [15, 16] is the extension of the Ram-

sey separated field technique (see Section 3.1) to the optical regime.The basics of
this technique can be explained as follows: consider a two-level atom. Absorption
of a resonant photon transfers not only the atom from the ground state |g⟩ to
the excited state |e⟩ but also the recoil momentumK with |K| = 2π∕𝜆 to the atom.
Consequently, the trajectory of the excited-state atoms is slightly changed with
respect to those remaining in the ground state. In the matter wave picture, where
the atoms with mass M and velocity v are represented by their de Broglie wave-
length 𝜆dB = h/(Mv), this process can be viewed as a beam splitter. For a properly
(pulse duration and amplitude) chosen excitation pulse (π/2 pulse), amplitudes of
the two partial matter waves are equal. By setting up four interaction zones with
temporal delay between these zones, the atom beam can be split and recombined
by the lasers if the interaction is still coherent and a time-domainMach–Zehnder
interferometer can be set up as illustrated in Figure 9.2. This interferometer
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Figure 9.2 Scheme of a Bordé–Ramsey atom interferometer. The laser beams are shown as
oscillatory lines with the arrow indicating the direction. The labeling |i,m⟩ refers to the state of
the atom where i = g and e refers to the ground and excited states, respectively, andm = 0, 1,
and −1 stands for the number of photon momenta transferred to the atom. The transition
from |e, 1⟩ to |g, 0⟩ at the second interaction zone reflects stimulated emission. Two equivalent
interferometers are set up by the interaction as shown in the figure. The two output ports of
each interferometer labeled I and II correspond to atoms leaving the interferometer in the
excited and ground states, respectively. Source: Göbel and Siegner 2015 [9]. Reproduced with
permission of John Wiley & Sons.

has two output ports where the atoms leave, respectively, in the ground and
excited states. The probability of finding the atom in either port depends on
the phase difference of the partial waves, and thus, the output signal detected,
for example, by fluorescence will exhibit interference fringes as a function of
detuning with the fringe width, Δ𝜈, inversely proportional to the flight time, T f
(Δ𝜈 = 1/(4T f)). Also, the phase shift can be affected externally, for example, by
gravitation or by rotation of the interferometer (Sagnac effect), which makes
atom interferometers a very sensitive measurement instrument [17].
Finally, to complete an optical clock, a technique for counting the

high-frequency optical cycles had to be developed. Today, this is accom-
plished by femtosecond frequency combs, which are briefly described in the
following section.

9.1.1 Femtosecond Frequency Combs

For an absolute measurement of an optical frequency, for example, at 500THz,
this frequency must be traced back to the frequency of the defining constant of
the second of the present SI, Δ𝜈Cs, at 9.2GHz. Thus, approximately 5 orders of
magnitude must be bridged [18].
For this purpose, coherent frequency dividing or multiplying techniques

had been used originally. Technically very demanding frequency chains had
been developed at several national metrology institutes. In the case of the fre-
quency chain of the Physikalisch–Technische Bundesanstalt (PTB), the National
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Metrology Institute of Germany, a delicate setup filling three laser laboratories
consisting of seven intermediate oscillators and seven nonlinear mixing steps
had been established. This setup provided a direct link between a Ca optical
frequency standard at 455.9 THz, that is, a dye laser stabilized to the 3P1 →

1S0
intercombination transition in 40Ca, and the Cs frequency [19].
A breakthrough in absolute optical frequency measurements has been the

development of optical frequency combs based on mode-locked femtosecond
lasers [20–23] for which T. Hänsch and J. Hall received the Nobel Prize in physics
in 2005.
Mode locking refers to the phase-coherent superposition of the longitudinal

modes of a laser resonator supported by the respective gain medium. For a
textbook description, see, for example, [24]. For active mode locking, intracavity
electro-optic or acousto-optic modulators are applied to modulate the loss of
the laser cavity periodically with a frequency corresponding to the round-trip
time of light in the laser resonator (T = 2L∕vg, vg is the group velocity) or
higher harmonics of the inverse of the round-trip time. Alternatively, the gain
can be periodically modulated (synchronous pumping). For passive mode
locking, a nonlinear device is placed inside the laser resonator, which by itself
causes the periodic modulation, for example, a saturable absorber. A saturable
absorber exhibits a nonlinear transmission becoming fully transparent at high
irradiance. It thereby forces the longitudinal modes of the laser resonator to add
up constructively to achieve highest irradiance. The total electric field can be
written as

E(t) =
∑
q
Aqei(𝜔0+qΔ𝜔)t + cc (9.3)

where q is themode number and themode spacing is given byΔ𝜔= 2π/T = 2πf rep
with the repetition rate f rep. The output in the time domain thus corresponds
to a pulse train with pulses separated by the round-trip time, T , and a width of
∼(NΔ𝜔)−1, where N is the number of longitudinal modes. (NΔ𝜔) corresponds
to the effective gain bandwidth. Ideally, the individual pulses would just be
time-shifted copies, that is, E(t) = E(t−T). In reality, however, in particular
for lasers with a large gain bandwidth generating extremely short pulses in the
femtosecond or even subfemtosecond regime, intracavity dispersion must be
considered resulting in different group and phase velocities (in lowest order).
Consequently, the carrier wave exhibits a constant phase shift, ΔΦgpo, for each
subsequent pulse, as seen in the upper part of Figure 9.3. In the frequency
domain, this results in an offset with respect to zero frequency 𝜔ceo = ΔΦgpo/T
when extrapolating the frequency comb spanned by the longitudinal modes to
zero frequency. The frequency of an individual laser mode,m, is then given by

𝜔m = 𝜔ceo +mΔ𝜔 (9.4)

Any frequency falling in between two adjacent lasermodes can bemeasured by
detecting in the radio-frequency regime the beat note between the unknown fre-
quency and the adjacent laser mode, provided the mode spacing, Δ𝜔, the mode
number,m, and the carrier envelope offset frequency, 𝜔ceo, are known. Since the
mode spacing, which corresponds to the repetition rate, typically is of the order
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Figure 9.3 Time trace of a
mode-locked laser pulse train
(a) and the corresponding
frequency spectrum (b), as
shown schematically. Source:
Göbel and Siegner 2015 [9].
Reproduced with permission
of John Wiley & Sons.

of 100MHz, it can easily be measured with a photodiode calibrated by a conve-
nient frequency standard in the microwave regime. The mode number, m, can
be obtained by a crude estimate of the unknown frequency with a wavemeter
providing a resolution of the order of the mode spacing.The carrier envelope off-
set frequency can be measured by beating the second harmonic of an individual
mode with mode number m, 2𝜔m, with the mode with mode number 2m, 𝜔2m
(self-referencing). The second harmonic is given by 2𝜔m = 2𝜔ceo + 2mΔ𝜔, while
the frequency ofmode 2m is𝜔2m =𝜔ceo + 2mΔ𝜔.The beat note 2𝜔m −𝜔2m =𝜔ceo
thus yields directly the carrier envelope offset frequency.This procedure requires,
however, that the frequency comb spans at least one octave. As𝜔ceo andΔ𝜔 are in
the radio-frequency regime, they can be locked to a stable microwave oscillator
traced back to the Cs clock. Frequency combs can be applied for absolute opti-
cal frequency measurement by measuring the beat note between the unknown
optical frequency and its adjacent comb line [23, 25, 26], for direct compari-
son of optical transition lines [27], for precise measurement of frequency ratios
[28], and as a clockwork in an optical clock to transfer the optical frequency into
the microwave regime. It meanwhile has been established that optical frequency
combs generated with femtosecond lasers can generate optical frequencies with
a fractional accuracy better than 10−18.
The mode-locked lasers most frequently used for frequency comb generation

are titanium–sapphire lasers (Ti:Al2O3) and fiber lasers. The active medium in
the titanium–sapphire laser is a sapphire (Al2O3) crystal heavily doped (about
0.1% in weight) with Ti3+ ions replacing Al ions. The titanium–sapphire laser
exhibits a large gain bandwidth from about 670 nm to 1.1 μm due to the crys-
tal field splitting of the electronic states involved. The setup of a mode-locked
Ti:Al2O3 laser is shown in Figure 9.4. Excitation of the Ti:Al2O3 crystal is usu-
ally by a frequency-doubled Nd:YAG laser with a few watt pump power. Mode
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Figure 9.4 Setup of a mode-locked Ti-sapphire laser with a linear resonator. Source: Göbel and
Siegner 2015 [9]. Reproduced with permission of John Wiley & Sons.

locking is achieved by the so-called Kerr lens mode locking [29] due to the opti-
cal Kerr effect, that is, a nonlinear dependence of the refractive index, n, of the
sapphire crystal on optical irradiance, I, n≅ n0 + n2I. This Kerr effect causes a
spatial variation of the phase in transverse direction, resulting in self-focusing
like an optical lens. This effect, of course, is stronger for pulsed light with higher
intensity compared to continuous wave (cw) light. A sufficiently small aperture
behind the sapphire crystal, which also can be provided by the narrow focus of the
pump laser itself, thus acts in the same way as a saturable absorber, resulting in
self-starting mode locking. This self-starting can be supported by a semiconduc-
tor saturable absorber. The pair of intracavity prisms together with the chirped
mirror [30] compensate for group velocity dispersion and self-phase modulation
imposed on the spectrum of the pulses.
Pulse trains with a pulse width of the order of some 10 fs and below at a

repetition rate of about 100MHz up to 10GHz [31] can be readily obtained with
mode-locked Ti:Al2O3 lasers in a wavelength regime of about 700–900 nm. The
mode comb spectral width of Ti–sapphire lasers with a pulse width of some
10 fs, however, does not cover a full octave. The comb width can be broadened
externally by applying the so-called holey fibers [32]. These silica fibers consist
of a two-dimensional periodic array of bores close to their core providing a very
small waveguide with a high refractive index contrast allowing compensation
of material dispersion by tailored waveguide dispersion. With these fibers,
coherent supercontinuum spectra covering the entire visible spectrum and the
near-infrared and frequency combs with more than one octave spectral width
can be generated [33].
Mode-locked Er-doped fiber laser systems are very attractive to realize

compact optical frequency comb generators [34–36]. Figure 9.5 shows the setup
of a mode-locked Er-doped fiber laser oscillator (a) with an amplifier stage (b).
The unidirectional Er-fiber oscillator is pumped by diode lasers emitting at
980 nm. Mode locking is achieved by nonlinear polarization rotation. Nonlinear
polarization rotation is again due to the optical Kerr effect causing self-phase
and cross-phase modulation. As a result, the polarization state in an optical
fiber depends on the irradiance. Combined with a linear polarizer, this causes an
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intensity-dependent loss again like a saturable absorber. By properly adjusting
the two polarization controlling stages, self-starting mode locking can be
initiated. The center wavelength is at about 1.55 μm, and a few mW average
output power can be generated. The oscillator output is then coupled into an
amplifier stage pumped by two diode laser chips. The pulses are first stretched
by a fiber with negative group velocity dispersion and then amplified whereby
the prechirped pulses are shortened during amplification due to the positive
group velocity dispersion of the Er-doped fiber. In addition, a Si-prism pulse
compressor is used to control the group velocity dispersion of the output. Pulse
widths are in the order of 50–100 fs at an average power of about 200mW. The
output pulse train then can be used for supercontinuum generation and second
harmonic generation for self-referencing of the comb [34].
Finally, it should be mentioned that alternative nonlinear techniques have also

been applied to generate frequency combs such as microresonators [37, 38],
which, however, due to their short length consequently exhibit very large
mode spacing. Further, extreme ultraviolet radiation frequency combs using
high-harmonic generation of femtosecond laser pulses in rare gases have been
developed [39–41], extending considerably the spectral range for precision
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spectroscopy and ultrafast science. Both techniques may become important for
future optical clocks and their applications.
Before discussing some of the most promising optical frequency standards

for optical clocks, we review the cooling and trapping techniques applied in
Section 9.1.2.

9.1.2 Trapping of Ions and Neutral Atoms for Optical Clocks

9.1.2.1 Ion Traps
Electrically charged particles can be trapped spatially by the combined action of
electric and magnetic fields. The so-called Penning trap uses a combination of
static electric and magnetic fields [42], while the Paul trap uses an AC electric
field (rf trap) [43]. In either case, the particles are trapped in vacuum, possibly by
adding some buffer gas.
A Penning trap uses a static spatially homogeneous magnetic field generated

by a cylindrical magnet and a static spatially inhomogeneous electric field
generated by a quadrupole–ring electrode configuration. The magnetic field
confines the particles in the plane perpendicular to the magnetic field direction,
and the electric field hinders them to escape along the direction of the magnetic
field. Penning traps are very successfully applied to measure properties of ions
and particles (such as mass, g-factor). For spectroscopy applications, the large
Zeeman splitting induced by themagnetic field and the cyclotron andmagnetron
motions are usually disturbing. In conjunction with laser cooling, Paul traps are
advantageous.
The Paul trap, also known as quadrupole ion trap, can be realized in a

linear and three-dimensional configuration. The electrode configuration of the
three-dimensional Paul trap is the same as that of the Penning trap, as shown
in Figure 9.6. It consists of two hyperbolic electrodes (a) and a hyperbolic ring
electrode (b). The two hyperbolic electrodes are centered in the ring electrode
facing each other. The rf electric field is applied between the ring electrode and
the hyperbolic electrodes, generating an oscillating electric quadrupole field. A
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Figure 9.6 Two-dimensional sectional view of the electrode configuration and electric field
distribution of a three-dimensional Paul trap. a: upper and lower hyperbolic cap electrode,
b: hyperbolic ring electrode. The left and right panels show the two half cycles of the rf field.
The arrows labeled E and FE denote the instantaneous electric field and force, respectively.
Source: Göbel and Siegner 2015 [9]. Reproduced with permission of John Wiley & Sons.
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charged particle faces oscillating forces under such conditions; in the first half
cycle of the field, the ions are focused in the axial direction and defocused in the
perpendicular direction, while in the second half cycle, they are defocused in
the axial and focused in the perpendicular direction. Since both effects alternate
with a high frequency (typically of the order of megahertz), the ions are trapped
in the space between these three electrodes. Mathematically, the motion of the
charged particles in such a field is described by Mathieu’s differential equations.
A rigorous treatment can be found in [44]. An intuitive understanding has been
presented by Wolfgang Paul himself: the motion of the charged particle can be
seen analogously to the motion of a mechanical particle, for example, a ball, in a
three-dimensional saddle point landscape; putting the ball on top of the saddle
point would lead to an unstable situation, resulting in the ball rolling down
the hill. However, if the saddle point landscape is rotated with sufficiently high
frequency around its symmetry axis piercing through the top of the saddle point,
the ball will be stabilized near the top because there is not enough time for it to
roll down before the potential has changed due to its rotation.
In a linear Paul trap, the electrodes are formed by metallic rods arranged

in a rectangular configuration (see Figure 9.7). Axial confinement then can
be achieved by either including additional ring electrodes (Figure 9.7a) or by
using segmented rods with three isolated parts (Figure 9.7b) and a DC potential
applied to the outer parts.
It must be noted that generally a Doppler broadening of optical transitions

of trapped ions in an rf trap occurs due to the oscillatory micromotion, which
for the first-order Doppler effect can be avoided when the ion is confined to a
regime smaller than the wavelength of the interacting laser field (Lamb–Dicke
regime) [45].
If more than one ion is trapped in a linear trap, Coulomb repulsion between

themmust be considered. If the kinetic energy of the ions is lower than the repul-
sion energy, crystalline structures are formed, a linear chain in the simplest case
(see Figure 9.8).These andmore complex (2D, 3D) quasicrystalline structures can
be used for quantum information processing [46] and to mimic solid-state phe-
nomena otherwise difficult to study (see, e.g. [47]). As in real crystals, collective
motion of the ions can be excited, resulting in a harmonic-oscillator-like discrete

U0

(a) (b)

Figure 9.7 Configuration of linear Paul traps with additional ring electrodes (a) or segmented
rods (b) for axial confinement. Source: Riehle 2004 [44]. Reproduced with permission of John
Wiley & Sons.
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Figure 9.8 Yb+ ions (seen by their fluorescence) in a linear Paul trap. The distance between
the ions is about 10–20 μm. Source: Courtesy of T. Mehlstäubler, PTB.

Figure 9.9 Potential landscape of
a two-dimensional optical lattice.
Source: Göbel and Siegner 2015
[9]. Reproduced with permission
of John Wiley & Sons. U

y
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vibrational excitation spectrum. This feature can be used for cooling of ions in
the trap (sideband cooling) [48, 49] and enables entanglement of ions [46, 50, 51].

9.1.2.2 Optical Lattices
Trapping and manipulation of neutral particles by laser radiation was first
demonstrated by A. Ashkin [52] for which he received the Nobel Prize in
physics in 2018. Particularly, neutral atoms can be trapped in a standing-wave
light field generated by interference between two (or more) laser beams due to
the intensity-dependent “light shift” of the energy levels (Stark shift) and the
resulting dipole force [53]. The potential landscape of a two-dimensional optical
lattice is shown in Figure 9.9. As can be seen, a periodic lattice of potential
minima is formed.The period of the minima isΔ = 𝜆/2, while their depth, which
depends on the laser intensity, is typically of the order of 10 μK.
Optical lattices have also been extensively used to simulate and investigate

complex solid-state systems (see, e.g. [54–58]).

9.1.3 Neutral Atomic clocks

Atomic clocks based on clouds of cold neutral atoms can be operated with high
signal-to-noise ratio (compared to single ions) due to the large number of atoms
(up to 108). However, a shift of the respective clock transition may occur due to
the interaction of the atoms, collision-related frequency shifts, in addition to all
other processes that could cause frequency shifts, such as magnetic and electric
fields, blackbody radiation.
Promising neutral atom standards to date are the 1S→ 2S two-photon tran-

sition in hydrogen [59]; intercombination transitions (1S0 → 3P1) in alkaline
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Figure 9.10 Simplified diagram of the
relevant energy levels of 40Ca. Source: Göbel
and Siegner 2015 [9]. Reproduced with
permission of John Wiley & Sons.

earth atoms such as strontium (88Sr), calcium (40Ca), and ytterbium (Yb); and
(1S0 → 3P0) transitions between levels with vanishing total electronic angular
momentum in Sr, Yb. Hg, Mg, and Cd. These originally dipole-forbidden
transitions become weakly allowed due to the HFS-mixing of the J = 0 and
J = 1 states, which in fermionic isotopes (e.g. 87Sr, 171Yb) is mediated through
the nuclear spin, while in bosonic isotopes (e.g. 88Sr, 174Yb) through external
magnetic fields. We next briefly describe the Sr and Ca frequency standards, for
example.
Optical transitions in the neutral 40Ca have been investigated for clock applica-

tions mainly at the National Institute of Technology of the United States (NIST)
[60–62] and PTB [63, 64].
A simplified diagram of the relevant energy levels of 40Ca indicating the cool-

ing transition at 423 nm and intercombination transition at 657 nm is shown in
Figure 9.10.The 657 nm clock transition has a natural linewidth of about 400Hz.
The Ca atoms are cooled in an magneto-optical trap (MOT) (see Section 3.2.1)
to temperatures of a fewmillikelvin well below the Doppler limit of the 1S0 → 1P1
transition by involving the forbidden 1S0 → 3P1 transition as well [65, 66]. For the
spectroscopy phase, the trapping laser and the magnetic field of the MOT are
turned off, and the free-falling and expanding atoms are excited by the 657 nm
laser radiation in a Bordé–Ramsey interferometer configuration. To obtain the
absorption dip profile, the number of atoms in the excited 3P1 state must be
measured as a function of frequency. Since the weak 3P1 →

1S0 fluorescence is dif-
ficult to detect, the so-called electron shelving techniques are frequently applied
[60, 63, 67]. In this technique, the strong 1P1 →

1S0 fluorescence is used to moni-
tor the 3P1 state population. Since both transitions share the same ground state,
atoms excited to the long-lived 3P1 state will reduce the 1P1 →

1S0 fluorescence;
atoms in the 3P1 state are shelved for some time.
The precise frequency of the 657 nm probe laser stabilized to the central fringe

of the interferometer has been measured with a femtosecond comb [61, 64, 68]
with a fractional uncertainty well below 10−13.
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Figure 9.11 Simplified term scheme of neutral
88Sr, indicating the cooling transition at 461 nm
and the 1S0 →

3P1 intercombination transition at
689 nmwith a natural linewidth of 7.6 kHz. Source:
Göbel and Siegner 2015 [9]. Reproduced with
permission of John Wiley & Sons.
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Finally, it should be mentioned that a transportable Ca frequency standard has
also been developed at theWuhan Institute of Physics (China) [69] and PTB [70],
and the latter was used for the comparison of standards at the PTB and NIST.
The frequency of the 1S0 → 3P1 intercombination transition in 88Sr (Figure 9.11)

has been measured by saturated absorption spectroscopy in a thermal beam by
Ferrari et al. [71] and in a free-falling ultracold atom beam by Ido et al. [14]. The
latter authors achieved a relative uncertainty of the order of 10−15 by particularly
accounting for the collision-induced frequency shift.
Very promising results have been achieved with the doubly forbidden

1S0 → 3P0 transition in 87Sr atoms trapped and stored in optical lattices [72–79].
The simplified term diagram of 87Sr is similar to that shown in Figure 9.11 for
88Sr. The cooling transition is again the 1S0 → 1P1 transition at 461 nm.The clock
transition (1S0 → 3P0) is at 698 nm. This transition becomes weakly allowed
in 87Sr because of hyperfine interaction with the large nuclear spin (I = 9/2).
However, the lifetime-limited natural linewidth is still expected to be extremely
narrow (∼1mHz). Trapping and storing the atoms in an optical lattice are very
attractive because many atoms can be involved and kept in the Lamb–Dicke
regime while still reducing collisional frequency shifts by proper design of the
lattice spacing. Yet, because in one-dimensional lattices the confinement is only
in one direction and in addition the wavelength is not a free parameter but
determined by the magic wavelength, collision shifts may still occur. In this
respect, three-dimensional optical lattices are superior [80, 81]. In general, the
rather strong light field creating the optical lattice would also cause frequency
shifts due to the AC Stark effect. It has been proven, however, that it is possible
to find a wavelength for the trapping light where the AC Stark shift of the
ground state and the excited state are the same (magic wavelength) due to
the nonresonant coupling of these states to higher energy levels [82–84]. At
present, the results for the 1S0 → 3P0 transition in 87Sr atoms agree on a level of
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10−16. Given its high stability [85–88] and low uncertainty [89, 90], the Sr lattice
clock transition becomes a serious candidate for a new defining constant for
the second. Recent experiments with three-dimensional optical lattices [80, 81]
have reached a precision at the 10−19 level [81]. The 1S0 → 3P0 transition in 87Sr
is also already recommended as one of the secondary representations of the
second [91, 92]. Besides Sr, lattice clocks with Yb [93], Hg [94], and Mg [95]
have been realized. Finally, a transportable Sr optical lattice clock with 7× 10−17
uncertainty has been developed [96] and applied in high-precision geodesy
experiments [97].

9.1.4 Atomic Ion Clocks

The major advantage of single-ion frequency standards [5, 98] compared to
atom clouds is the absence of interaction effects and their amazingly long
storage time, which can simply be several months. This means practically
unlimited interrogation times for the probe laser. However, the price to pay is
lower signal intensity and thus lower signal-to-noise ratio, which can be partly
overcome by using multi-ion clocks [99–101]. Trapped single-ion frequency
standards have been realized with the 1S0 → 3P0 transition in 115In+ [102] and
27Al+, the 2S1/2 → 2D5/2 electric quadrupole transition in 199Hg+ [103–105], the
2S1/2 → 2D5/2 electric quadrupole transition in 88Sr+ at 674 nm [106, 107] and
40Ca+ [108–110], as well as 171Yb+. We briefly describe the results obtained with
171Yb+ and 27Al+ in the following text.
Ion frequency standards usually start with a neutral atom beam created by

evaporation and subsequent ionization by either electron impact or optical radi-
ation followed by the cooling and trapping procedure.
The ytterbium ion (171Yb+) is a particularly interesting candidate for an optical

clock since besides the electric quadrupole transition (2S1/2 → 2D3/2) at 436 nm, it
has a second highly forbidden octupole transition (2S1/2 → 2F7/2) at 467 nm with
an extremely long excited-state lifetime of several years. A partial energy scheme
is shown in Figure 9.12.
Measurements of the 2S1/2 (F = 0)→ 2D3/2 (F = 2) transition have been reported

by Tamm et al. [111] and of the 2S1/2 (F = 0)→ 2D5/2 (F = 0) transition at 411 nm
by Roberts et al. [112] using quantum jump fluorescence detection [113]. The
concept of quantum jump fluorescence detection is that the fluorescence at the
cooling transition at 370 nm is quenched (dark) whenever the ion is excited to the
2D3/2 or 2D5/2 state by the clock laser.The absolute frequency of the 436 nm tran-
sition has been determined with a femtosecond comb with a relative uncertainty
of 1.1× 10−15 [114] and by using cross-linked optical and microwave oscillators
with an uncertainty of 1.1× 10−16 [115]. A comparison of the frequencies of ions
in two independent traps shows agreement on a level of 4× 10−16 [116].
The electric octupole transition in 171Yb+ is of special interest not only because

of its long excited-state lifetime and thus narrow homogeneous linewidth in the
nanohertz regime but also because the quadrupole transition and the octupole
transition exhibit quite different relativistic corrections [117], thus providing
an ideal probe to investigate possible time variations of the fine-structure
constant, 𝛼 (see Section 9.1.5). The 2S1/2 (F = 0)→ 2F7/2 (F = 3) transition
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Figure 9.12 Partial energy scheme of 171Yb+ indicating the cooling transition at 370 nm
(dashed blue arrow), the electric quadrupole transition at 436 nm as well as the electric
octupole transition at 467 nm (green arrows). The other transitions to higher D-states (red
arrow) are used for repumping. The dotted arrows indicate spontaneous transitions. The
notation at the upper left refers to a specific coupling-scheme (JK- or J1L2-coupling)
particularly applied, for example, for rare-earth atoms.
Source ∶ Courtesyof N.Huntemannand E.Peik,PTB.

had been first investigated at the National Physical Laboratory (NPL) [118]. A
difficulty encountered with the octupole transition is high intensity of the probe
laser needed to drive this very weak transition, resulting in a considerable AC
Stark shift. Initially, extrapolation schemes have been used to determine the
unperturbed transition frequency. Later modified Ramsey schemes have been
proposed and demonstrated [119–121] that suppress the excitation-related
shifts and thus open the way to even more precise measurements on the level of
a few parts in 1018 [122].
Recent measurements of the octupole transition frequency show agreement

on the 10−15 level [123, 124]. Figure 9.13 shows an excitation spectrum of the
octupole transition using the quantum jump detection technique. The transition
is excited by a laser system with excellent stability better than 2× 10−15 at one
second averaging time [125].
The aluminum ion (27Al+) is also a promising candidate for an optical clock

because its 1S0 → 3P0 intercombination transition exhibits a narrow linewidth
of 8mHz [113, 126] and it has low sensitivity to electromagnetic perturbations
and blackbody radiation. However, the 27Al+ ion does not possess an accessible
strong optical transition for laser cooling and detection. However, using quantum
logic spectroscopy [50], an Al+ ion frequency standard has been constructed at
the NIST for the first time [127]. In quantum logic spectroscopy, an auxiliary
atom (logic atom) is used to cool the vibrational motion and probe the internal
state of the atom to be investigated (spectroscopy atom). For this purpose, both
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Figure 9.13 Excitation spectrum of the 2S1/2 (F = 0)→ 2F7/2 (F = 3) transition in 171Yb+.
Source ∶ Courtesyof N.Huntemann,PTB.

ions are trapped together in a linear Paul trap, and the ion pair forms a two-ion
linear Coulomb crystal along the axis of the trap due to their repulsive Coulomb
interaction.Thequantummechanical state transfer is brought about by their joint
motion, giving rise to vibronic sidebands.The spectroscopy ion is cooled through
the laser-cooled logic ion via their Coulomb interaction (sympathetic cooling).
The spectroscopy of the ion is then performed with a suitable laser, and the inter-
nal state is transferred to the logic ion by coherent interaction with a sequence of
laser pulses on both ions. The outcome of the spectroscopy is then detected on
the logic ion using the quantum jump technique [113].
In the first spectroscopy experiment, the 1S0 → 3P0 clock transition in 27Al+ was

probed by a 9Be+ ion [127].When driving the 1S0 → 3P0 transition by a clock laser,
this will also modulate the 1S0 → 3P1 transition due to electron shelving, and this
state is then transferred to the Be+ ion. This experiment enabled the first precise
measurement of the 1S0 → 3P0 transition frequency with a fractional uncertainty
of 5× 10−15 and the determination of the 3P0 state lifetime of 20.6± 1.4 seconds.
Further, the frequency ratio of the Al+ and Hg+ single-ion optical clock has been
measured at the NIST with an uncertainty better than 10−16 [105]. A second
version of the Al+ ion clock constructed at the NIST uses Mg+ as logic ions,
which better match the mass of the Al+ ion, thus enabling more efficient sympa-
thetic cooling [128]. A comparison of this Al+–Mg+ clockwith theAl+–Be+ clock
showed fractional agreement of bothmeasured frequencies on the 10−17 level and
a relative stability of a few times 10−15 𝜏−1/2 (with 𝜏 being the averaging period; c.f.
Eq. (3.8)) [129]. This demonstrates their potential not only for clock applications
butmaybe evenmore for fundamental physics studies such as the investigation of
possible changes of fundamental constants, particularly the fine-structure con-
stant (see Section 9.1.5), relativity, and geodesy applications [97, 130–132].
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We finally mentioned recent developments that may lead to optical clocks with
even higher accuracy and stability. These are clocks based on optical transitions
in nuclei and highly charged ions.
Atomic clocks based on optical transitions in a nucleus are of interest for opti-

cal clock applications because they are less sensitive to external perturbations
[133–136]. Yet, the most severe restriction for the possible choice of a suitable
nucleus is the accessibility of the respective transition by high-resolution laser
spectroscopy. High-precision γ-spectroscopy [137] had indicated that 229Th
indeed should possess an isomeric excited state above the ground state by
only about 3.5 eV. Later measurements resulted in the presently accepted value
of 7.8 eV [138]. These two states are linked optically by a magnetic dipole
transition. Possible laser spectroscopy techniques to access this transition had
been suggested by Peik and Tamm already in 2003 [133], but it was not until
recently that this transition had been investigated [139, 140], however, not yet
directly by high-resolution laser spectroscopy as required for atomic clock appli-
cations. Nevertheless, high-resolution spectroscopy of the hyperfine structure
of electronic transitions of 229Th2+ meanwhile has provided detailed information
about the fundamental nuclear properties of the isomer [140]. Since the 229Th
nuclear clock has been proposed as a particularly sensitive system to search for
temporal variations of the fine-structure constant [141], these developments not
only pave the way to optical clocks that outperform existing atomic timekeepers
but will also contribute to answer most fundamental questions in basic physics
(see Section 9.1.5).
Optical clocks with highly charged ions should also be less sensitive to external

perturbations and thus may exhibit higher accuracy and stability than conven-
tional optical clocks based on neutral atoms or singly charged ions [142]. In
addition, electronic optical transitions in selected highly charged ions should also
exhibit high sensitivity to variations of the fine-structure constant [143–145].

9.1.5 Possible Variation of the Fine-Structure Constant, 𝜶

The dimensionless fine-structure constant, 𝛼, is considered a fundamental con-
stant of nature.

𝛼 = e2
4π𝜀0ℏc

≈ 1
137

(9.5)

According to quantum electrodynamics (QED), 𝛼 is a measure of the strength of
the electromagnetic interaction. Its value, however, cannot be calculated within
QED but must be determined by experiment. Presently, the most precise value
comes from the determination of the Landé g-factor of the electron [146, 147],
and based on these results combined with QED calculations, 𝛼 has been deter-
mined with a relative standard uncertainty of 7× 10−10 [148], while the latest
CODATA (International Council for Science: Committee on Data for Science
andTechnology) result lists an uncertainty of 2.3× 10−10 [149].The fine-structure
constant can also be determined by the quantum Hall effect (see Section 5.4.5).
Recently, considerable attention has been paid to search for possible temporal

variations of fundamental constants, in particular, the fine-structure constant
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and the proton-to-electron mass ratio [150–152]. According to the present
understanding of the laws of physics including quantum theory and relativity,
the fundamental constants do not vary in time.This is a consequence of Einstein’s
equivalence principle (EEP). In particular, the local time and position invariance
states that in any local free-falling reference frame, the result of a measurement is
independent of space and time. On the other hand, theories beyond the standard
model of physics, which aim at unifying the theory of all forces and bringing
together quantum theory and gravitation, allow for space–time variation of
fundamental constants. This would mean that frequency of an optical transition
might vary in time. Whether this contradicts the EEP is not obvious but depends
on the detailed physics behind. Further, studies of the absorption lines of inter-
stellar clouds in the light of distant quasars have been interpreted as evidence for
a variation of the fine-structure constant 𝛼 on cosmological timescales of some
10 billion years [153]. According to their interpretation, a relative increase in the
fine-structure constant Δ𝛼/𝛼 of the order of 10−6 should have occurred in the
first half of the evolution of the universe. Assuming a linear variation with time
that would continue up to today, this would extrapolate to a relative increase in
𝛼 of some 10−16 per year. In contrary, other studies rule out a change of 𝛼 [154].
It is only with the development of the most recent optical frequency standards

that this order of magnitude is accessible by laboratory experiment in reasonable
time intervals [105, 155–162]. To analyze frequency measurements in respect to
possible variations of 𝛼, the electronic transition frequency can be expressed as
[163]

𝜈 = const ⋅ Ry ⋅ F(𝛼) (9.6)

where the Rydberg frequency Ry = mee4∕8𝜀0h
3 is the common scaling factor for

the energy levels in atoms and the dimensionless factor F(𝛼) accounts for rela-
tivistic corrections of the energy levels. The “constant” prefactor depends only
on the quantum numbers of the atomic states involved and is independent of
time. The relative temporal variation of 𝜈 is given by

d ln 𝜈
dt

=
d lnRy

dt
+ Ad ln 𝛼

dt
withA = d ln F

d ln 𝛼
. (9.7)

A variation of the Rydberg frequency given by the first term would be common
for all transition frequencies. In contrast, the second term is specific to the atomic
transition considered.The so-called sensitivity factorA accounts for the sign and
strength of the effect of a variable 𝛼 on the transition frequency and has been
calculated for several transitions of interest [164, 165].
A summary of recent results is depicted in Figure 9.14 where the estimated

relative temporal variation of the optical transition frequencies measured with
respect to the 133Cs ground state hyperfine transition frequency, Δ𝜈Cs, (i.e. in SI
units) is plotted versus their respective sensitivity factor A. Based on these data,
a constraint for the time variation of

dln𝛼
dt

= (−0.22 ± 0.20) × 10−16 per year (9.8)
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has been obtained [161]. Further, a constraint for the relative change of the
proton-to-electron mass ratio 𝜇 = mp∕me has been given in Ref. [161]:

dln𝜇
dt

= (−0.5 ± 1.6) × 10−16 per year (9.9)

Similar results have been obtained by Godun et al. by analyzing the quadrupole
(436 nm) and octupole transitions (467 nm) in 117Yb+ [162]. Recently published
data on a test of general relativity based on long-term comparison of atomic tran-
sition frequencies are also in agreement with these results [166].
So, the present results of laboratory studies of possible changes of 𝛼 and the

proton-to-electron mass ratio using the latest state-of-the-art optical clocks do
not give evidence for a change on the uncertainty level of order of 10−17 per year.
This, however, cannot exclude possible changes on cosmic timescales. Further
improvement of optical clocks including possibly clocks based on nuclear transi-
tions and highly charged ions (see above) and clock assemblies in space [167] def-
initely will provide even more accurate tests of fundamental physics and thereby
contribute to solving the remaining puzzles in the understanding of nature.
Let us close Section 9.1 with some general remarks: The unit second is still

defined by the Cs hyperfine transition within the present SI, and one might
ask about the “when and how” of a new definition [168–170]. Concerning the
“when,” one must state that the development of ultraprecise and stable optical
clocks presently is primarily driven by basic science. Present technical and indus-
trial requirements are generally satisfied by the best Cs clocks notwithstanding
that the availability of improved technologies often results in new applications,
e.g. improved relativistic geodesy and satellite navigation systems. In addition,
the accepted secondary realizations of the second including the best optical
clocks [91, 92] leave room for further scientific progress. A new definition of the
second should only be considered when the physical grounds for the definition
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and its realization are proven and generally accepted [92, 170]. This brings us
to “how” the new second should be defined. If we consider optical clocks, it
must be decided on which atom or ion transition frequency is chosen as the
defining constant of the second with the femtosecond comb technique providing
traceability of other optical clocks as secondary realizations. The essential
requirement is that extensive intercomparisons of the frequencies of the optical
clocks must take place to develop a robust and generally accepted base for a new
definition. These optical clock frequency comparisons are under way. On-site
clock comparisons today can be performed at the 10−19 uncertainty level using
femtosecond combs by taking into account the (eventually remaining) height
difference and the related gravitational redshift. The comparison of remote
clocks with the required uncertainty level, however, turns out to be a much
bigger problem, since the established two-way satellite microwave frequency
transfer techniques are limited to some 10−15 uncertainty at averaging times
of a day. Establishing direct optical (laser) links via satellites [171, 172] would
bear the potential for optical clock comparisons; however, these techniques are
much dependent on environmental conditions and not yet fully established.
Alternatively, frequency transfer by optical fibers has been demonstrated over
almost 2000 km with an uncertainty of 4× 10−19 at only 100 seconds averag-
ing time [173]. This already has made it possible to test special relativity with
unprecedented statistical uncertainty by frequency comparison of remote optical
clocks located in, respectively, France, the United Kingdom, and Germany [174].
Finally, transportable optical clocks [96] will enable remote clock comparison.

9.2 Single-PhotonMetrology and Quantum Radiometry

Photons are the massless bosonic quanta of electromagnetic radiation carrying
the energy E = h𝜈, where 𝜈 is the light frequency. The concept of photons dates
back to Planck [175] and Einstein [176] at the beginning of the twentieth century
even though the name photon (from the Greek word phos meaning light) was
created only in 1926 by Lewis [177, 178].
Max Planck, while developing his famous radiation formula, postulated that

the energy exchange between electromagnetic radiation and the wall of a black
body can take place only in discrete quanta of energy h𝜈. Albert Einstein then
used the concept of light quanta to explain the photoelectric effect, for which he
was awarded the 1921 Nobel Prize in physics.
The concept of photons, however, became much more prominent with the

development of quantum optics showing that there is more to quantify the
nature of light than the wavelike quantities such as frequency, intensity, and
polarization. These are, in particular, the coherence properties of light as
described by correlation functions for the field, intensity, and photon number
[179, 180].
The first-order (field-) correlation function

g(1)(r1, t1; r2, t2) =
⟨
E∗(r1, t1)E(r2, t2)

⟩
[⟨||E(r1, t1)||2⟩ ⟨|E(r2, t2)|2⟩]1∕2 (9.10)
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describes the spectral properties. The pointed brackets ⟨ ⟩ denote an ensemble
average.TheFourier transformof g(1) (r1, t1; r2, t2) is the spectrumof the radiation
source and accounts for the contrast (visibility) of interference patterns of the
electromagnetic field reflecting the phase correlation of the light field. For plane
waves and stationary fields where the ensemble average can be replaced by a time
average and neglecting further spatial dependencies, Eq. (9.10) simplifies to

g(1)(𝜏) =
⟨E∗(t)E(t + 𝜏)⟩⟨|E(t)|2⟩ (9.11)

The second-order correlation function g(2) (r1, t1; r2, t2) describes the intensity
correlations:

g(2)(r1, t1; r2, t2) =
⟨E∗(r1, t1)E∗(r2, t2)E(r1, t1)E(r2, t2)⟩

[⟨|E(r1, t1)|2⟩⟨|E(r2, t2)|2⟩] (9.12)

For plane waves and stationary classical fields, this can be written in terms of
intensities, I:

g(2)(𝜏) =
⟨I(t + 𝜏)I(t)⟩⟨|I(t)|2⟩ (9.13)

More general, in terms of photon creation and annihilation operators, respec-
tively, a† (t) and a(t), the second-order correlation function for stationary fields
neglecting again any spatial dependencies is given by

g(2)(𝜏) =
⟨a†(t)a†(t + 𝜏)a(t)a(t + 𝜏)⟩⟨a†(t)a(t)⟩2 (9.14)

where a† a gives the photon number, n, of the respective mode.
While the first-order correlation function can be measured , for example, by

a standard Michelson interferometer, the second-order correlation function
is by using a Hanbury Brown and Twiss interferometer [181] (Figure 9.15]).
To further prove that photons are indistinguishable, two-photon interference
(Hong–Ou–Mandel experiment [182]) must be performed. For the following,
we shall consider g(2) (𝜏) only.
For any state of light g(2)(𝜏→∞) = 1, because photon emission is uncorre-

lated for large delay times (Figure 9.16). For 𝜏 = 0, the probability for simulta-
neous detection of two photons can be increased, unaltered, or decreased with

Figure 9.15 Set-up of the Hanbury
Brown and Twiss interferometer.
Source: Göbel and Siegner 2015
[9]. Reproduced with permission of
John Wiley & Sons.
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Figure 9.16 Second-order
correlation function g2(𝜏) versus
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Göbel and Siegner 2015 [9].
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John Wiley & Sons.

respect to g(2)(𝜏→∞). For thermal light, g(2)(0) = 2; for coherent light (coherent
in second order), g(2)(0) = 1; and for nonclassical light, g(2)(0)< 1. For a “true”
single-photon emitter (single-photon Fock state), g(2)(0) = 0. While g(2)(0) = 2
corresponds to bunching of photons, g(2)(0)< 1 reflects antibunching. In terms
of photon-counting statistics, g(2)(0) = 2 corresponds to Bose–Einstein statis-
tics, while g(2)(𝜏)≡ 1 reflects Poisson statistics [183]. g(2)(0)< 1 is associated with
sub-Poissonian statistics [184].
Bunching of thermal light is simply a manifestation of fluctuating electromag-

netic fields and Bose statistics: more photons are emitted when the instantaneous
light intensity is higher than the mean intensity. Consequently, the probability to
detect another photon is increased. In contrast, antibunching of a single two-level
emitter is because when a photon is emitted, the emitter returns into the ground
state and a second photon cannot be emitted simultaneously.
Single-photon emitters are of considerable interest for quantum information

applications such as quantum cryptography and quantum computing [185].
In quantum metrology, another promising application could be in the field
of radiometry and photometry, where they could provide quantum standards
for (spectral) radiative power and luminous flux on the base of counting pho-
tons from a single-photon emitter [186]. Knowing the photon energy h𝜈, the
(spectral) radiative power of a single-photon emitter, Φ, is given by the number
of photons emitted per time interval, r, multiplied by h𝜈:Φ = r ⋅ h𝜈 (note the
analogy to quantized currents, Eq. (6.1)). However, due to the small energy of
a single photon, for example, a photon at a wavelength of 500 nm carries an
energy of about 4× 10−19 J, single-photon sources with high repetition rate are
needed to bridge the many orders of magnitude in power relevant for practical
applications.

9.2.1 Single-Photon Sources

Even though “quasi” single photons may be generated by strongly attenuating a
coherent light source, for example, a laser, the photon statistics will be unaltered;
that is, it remains Poissonian. Therefore, here, we have to consider a different
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approach for sources that emit nonclassical light, showing g(2)(0)< 1 (preferably
g(2)(0) = 0) and thus obeying a sub-Poissonian statistics.
The fundamental element of a single-photon source is an optical transition (a

two-level system in the simplest case) of an individual radiation source prefer-
ably with high quantum efficiency.This could be single neutral atoms, single ions,
single molecules, single color centers, or semiconductor quantum dots. A single
photon can be emitted at any arbitrary time or also triggered by the user, thus
being a deterministic source. The single-photon emitter often will be coupled to
a resonant cavity that causes the radiation to be emitted into a well-defined spa-
tialmodewith high collection efficiency. Furthermore, the cavity can enhance the
spontaneous emission rate (Purcell effect) and narrow the spectral bandwidth of
the emission. For the sake of completeness, probabilistic single-photon sources
should also be mentioned. These sources are based on parametric downconver-
sion or four-wave mixing producing always pairs of photons where one photon
can be used to herald the creation of the other one (the so-called “heralded single
photon”). For further reading, see, for example, [187–190].
Photon antibunching was first observed in the resonance fluorescence of Na

atoms continuously excited by a dye laser by Kimble et al. [191]. Dietrich and
Walther observed antibunching emission of a laser-cooled single ion stored in a
Paul radio-frequency trap [192]. Inmolecule fluorescence, antibunching was first
reported by DeMartini et al. [193], Kitson et al. [194], and Brunel et al. [195]. Fur-
ther, a single-photon source based on Rydberg excitations in an Rb gas held in a
linear optical lattice was demonstrated [196–198]. In view of potential applica-
tions, however, solid-state single-photon emitters might bemore promising even
though in some cases they may require cooling to low temperatures. Here, two
systems have gained considerable interest, namely, color centers in diamond, in
particular, nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers, and semi-
conductor quantum dots.

9.2.1.1 (NV) Color Centers in Diamond
A (NV) color center in diamond is formed by a substitutional nitrogen atom and
an adjacent vacancy in the diamond lattice. The (NV) centers are prepared in
type 1 synthetic diamond that usually contains homogeneously dispersed nitro-
gen impurities. Vacancies are created by electron or neutron irradiation. Subse-
quent annealing at about 900 ∘C results in the formation of (NV) centers (a small
number of (NV) centers are already present without extra annealing). The (NV)
center exhibits two charge states, electrically neutral and negatively charged. A
simplified energy level structure of the (NV)− center is shown in Figure 9.17.
Electron transitions between the 3A ground state and the 3E excited state (the

labeling of the energy levels is according to the C3V symmetry group), separated
by 1.945 eV (637 nm), produce absorption and luminescence. The 3A state and
the 3E state are split into the states with spin quantum number mS = ±1 and
mS = 0 by ∼5.6 μeV [199, 200] and ∼2.9 μeV [201], respectively, due to the mag-
netic interaction of the unpaired electrons at the NV− center.ThemS = ±1 states
are further split due to hyperfine interaction – the interaction between the elec-
tron and nuclear spins.Themetastable singlet state 1A that acts as a nonradiative
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Figure 9.17 Energy-level structure (not to scale) of
the (NV)− center. Source: Göbel and Siegner 2015 [9].
Reproduced with permission of John Wiley & Sons.

trap state for excitation is also indicated. However, its energetic position is not
known exactly.
The room temperature photoluminescence of the (NV)− centers exhibits

a zero-phonon emission line at 637 nm accompanied by a broad (≈120 nm)
phonon-assisted recombination band [202, 203]. The (NV)− emission shows
high quantum efficiency close to one and short recombination lifetime (≈11 ns)
[202]. Individual (NV) centers can be addressed using microscope imaging
technique. Figure 9.18a shows a confocal microscopy raster scan of a part of a
diamond sample with (NV) color centers. The bright regions show the emission
from (NV)− centers in nanodiamonds [204]. The second-order correlation
function of the emission of an individual center is shown in Figure 9.18b. The
pronounced dip at 𝜏 = 0 clearly shows the quantum nature of the emission.
We note that g(2)(𝜏) is larger than one for delay times that are larger than the
radiative recombination lifetime. This fact relates to the presence of the 1A state
to which the excited state can relax [202].
Besides the emission from the NV center with photon rates up to 1MHz

[204], other defect-related emission of diamond [205] such as the emission from
SiV centers in diamond nanocrystals was investigated [206, 207]. These centers
exhibit emission between approximately 730 and 750 nm, depending on the
local stress in the nanodiamonds with zero-phonon linewidth on the order of
0.7–2 nm and photon rates of up to 6MHz [206–209]. Other defect centers
under investigation in diamond are the nickel-related color center (NE8) [210],
the chromium-related center [211, 212], and the interstitial carbon-related color
center, TR 12, emitting at 470 nm. In the last case, single color centers can be
created selectively using focused ion beams [213].
As a further promising step toward practical applications, electrical excitation

of the (NV)0 color center in diamond at room temperature has been realized
[214] by fabricating a standard LED structure, a pin diode with p- and n-doped
diamond layers separated by an intrinsic diamond layer that contains the (NV)
center. Besides its potential for single-photon emitters, color center defects in
diamond are of interest for single-spin manipulation [215]. Further, nanoscale
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Figure 9.18 (a) Confocal
microscopy raster scan of a part of
a diamond sample with (NV)− color
centers. The bright regions show
the emission of the (NV) centers in
nanodiamonds. (b) Second-order
correlation function g(2)(𝜏) of
spectrally filtered emission from an
individual (NV)− center (some are
marked by circles in (a)). The
pronounced dip at 𝜏 = 0 clearly
shows the quantum nature of the
emission. Source: Courtesy of S.
Kück, PTB.
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nuclear magnetic resonance (NMR) spectra have been recorded using the (NV)
center [216–219].

9.2.1.2 Semiconductor Quantum Dots
The characteristic feature of semiconductor quantum dots is their discrete
electronic states due to size quantization in all three spatial dimensions (i.e.
L< 100 nm; see Chapter 5). The electronic states thus resemble those of atoms,
therefore, semiconductor quantum dots are often called artificial atoms. For
further reading, see Refs. [220–222]. One way to fabricate semiconductor
quantum dots is to start with a two-dimensional electron gas (2DEG) formed
in semiconductor heterostructures such as GaAs/AlGaAs or InGaAs/GaAs (see
Section 5.2). Quantum dots then can be formed by (electron beam) lithography
and subsequent chemical etching (see, e.g. [223]). However, the optical quality
of free-standing quantum dots is poor even when overgrown with a larger
bandgap material. Semiconductor quantum dots have also been fabricated by
laser-induced interdiffusion [224]. Most fabrication techniques, however, rely
on self-assembled quantum dots formed during epitaxial growth of slightly
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lattice-mismatched semiconductors (Stranski–Krastanov growth mode [225]).
III–V (e.g. InP in GaAs and InGaAs in GaAs) as well as II–VI heterostructures
(e.g. CdSe in ZnS) have been mostly studied so far. Single-photon emitters in
the blue spectral regime have also been realized with InGaN/GaN quantum
dots [226]. The photoluminescence at low temperatures and weak excita-
tion originates from neutral and charged excitons (and biexcitons), that is,
Coulomb-bound electron–hole pair recombination [227, 228]. A photolumines-
cence spectrum of a single InGaAs/GaAs quantum dot is shown in Figure 9.19
[229].
Antibunching of the exciton emission has been demonstrated in quantum dots

embedded in resonant microcavities [230–232]. The cw photoluminescence
spectrum of an InAs/GaAs quantum dot embedded in a microdisk resonator
structure is shown in Figure 9.20 together with the second-order correlation
function (inset). The photoluminescence clearly exhibits the exciton (1X) and
biexciton (2X) emission together with some spurious background emission (M),
which couples to a whispering gallery mode of the microdisk. The second-order
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Figure 9.19 Photoluminescence
spectra (T = 2.3K) of a single
InGaAs/GaAs quantum dot for
different excitation intensities,
showing at low excitation a single
line due to the lowest state (s-shell)
exciton recombination (1X). At
higher excitation also biexciton (2X)
recombination and emission from
the next excited state (p-shell) of the
quantum dot are observed. Source:
Findeis et al. 2000 [229]. Reproduced
with permission of Elsevier.
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Figure 9.20 cw-Photoluminescence of
an InAs/GaAs quantum dot and
second-order correlation function of
the exciton (1X) emission. Source:
Courtesy of P. Michler, University
Stuttgart.
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correlation function of the spectrally filtered exciton emission clearly shows the
nonclassical behavior of the emission.
Electrical excitation of single-photon quantum dot emission has also been

achieved [233–236]. In either case, optical or electrical excitation, it must
be assured that radiative transition is only excited once at a time to ensure
single-photon emission. In the case of optical excitation, this occurs through
absorption saturation together with the combined effect of an anharmonic
multiexciton spectrum and slow relaxation of highly excited quantum dots
[231, 232], while in the electrical excitation through Coulomb blockade (see
Section 6.1.2) [234, 236].

9.2.2 Single-Photon Detectors

Single-photon detectors are required to test the fidelity of single-photon
sources. Photon detectors usually convert an incoming photon into an electric
signal, which is further processed (e.g. amplified) electronically. Single-photon
detectors are sometimes classified into nonphoton-number-resolving and
photon-number-resolving detectors even though this distinction is not always
strict. For a detailed listing and comparison of single-photon detectors, see
[189]. Nonphoton-number-resolving detectors can only distinguish between
zero and more than zero photons, while photon-number-resolving detectors
can count the number of incoming photons (within a certain uncertainty). For a
detailed overview, see [189, 237].

9.2.2.1 Nonphoton-Number-Resolving Detectors
Most familiar nonphoton-number-resolving detectors are photomultiplier tubes
(PMTs) and avalanche photodiodes (APDs). While the detection efficiency of
APDs (up to 80% for InGaAs APDs; for the near-IR spectral regime, the quantum
efficiency is lower) is higher than that for PMTs (typically 25%, up to 40%), the
dark count rate of APDs is higher, which often requires cooling below room
temperature. Further, since APDs for single-photon detection (single-photon
avalanche diodes, SPADs) [238] are usually operated in the so-called Geiger
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mode with a bias voltage greater than the breakdown voltage of the diode,
the avalanche current does not terminate by itself after an incoming photon
pulse but instead must be turned off by lowering the bias voltage. As a result,
dead times of SPADs are generally larger than for PMTs, depending, of course,
crucially on the detector electronics. The dead time limit of SPADs can be
overcome partly by using a multiplex detector array consisting of fiber splitters
and an array of detectors addressable individually by optical switches [239].

9.2.2.2 Photon-Number-Resolving Detectors
Photon-number-resolving detectors are often based on superconducting mate-
rials with sharp superconducting to normal metal transitions. Most promising
devices to date are superconducting transition-edge sensors (TESs) [240] due to
their high efficiency and low dark counts. TESs are basically microcalorimeters
that measure the energy of the absorbed photons. The operation principle of a
TES is illustrated in Figure 9.21.
The thermal sensor of the TES is made from a thin film of superconducting

material deposited on an isolating substrate. TESs have been made with tung-
sten and aluminum [240, 241], titanium [242], and hafnium [243]. Also, bilayers
of a superconductor and a normal metal (Ti/Au and Ti/Pd) [244] and trilayers
of Ti/Au/Ti [245] have been used, which enables to vary the superconductor
transition temperature due to the proximity effect. The superconducting film is
structured by standard lithography techniques and contacted by superconduct-
ing wires, mostly Al.
A constant bias voltage of the superconducting film provides an electrothermal

feedback (ETF) such that the temperature is maintained [240]. The constant bias
voltage source can also be realized by a constant current source together with a
bias resistor with much lower resistance than the TES resistance. The reduction
of the current flowing through the sensor due to absorption of photons is read
out with a DC superconducting quantum interference device (SQUID) operated
in a flux-locked loop (see Section 4.2.3.1) [244] (see Figure 9.22).

R

Tc T

ΔT = εEυ/Ce

υ

Figure 9.21 Operation principle of a TES depicting the resistance, R, versus temperature, T ,
close to the superconductor transition temperature TC.ΔT is the increase in the temperature
due to the absorption of a photon (𝜀 is the detection efficiency, Ev = hv is the energy of the
photon, and Ce the electronic heat capacity). Source: Göbel and Siegner 2015 [9]. Reproduced
with permission of John Wiley & Sons.
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Figure 9.22 ETF-TES bias circuit
with a dc SQUID read-out.
Source: Göbel and Siegner 2015
[9]. Reproduced with permission
of John Wiley & Sons.
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Figure of merit of TES single-photon detectors are detection efficiency, 𝜀 (ratio
of the detected energy to the incident energy) and rise and fall time of the sensor.
While detection efficiency in fiber-coupled devices can be quite high (up to 98%
[242]), fall times are usually moderate (some hundred nanoseconds to several
microseconds).

9.2.3 Metrological Challenge

Themajor challenge for the use of single-photon emitters as quantum standards
for radiative power or luminous flux is to provide the link between optical power
measurements in themilliwatts regime to the level of single-photon emitters.This
would require either single-photon sources operating at extremely high repeti-
tion rate or linear detectors traced to a primary standard (e.g. a cryoradiometer).
To calibrate SPADs operating in the few photon regime, that is, below about

106 photons per second, many orders in intensity must be bridged to transfer
the SI scale down to these very small intensities, considering the limited linear-
ity of SPADs. Thus, careful attenuation of a calibrated light source, for example,
a laser, is required, using two or more neutral density filters with high attenua-
tion subsequently measured in situ (see Figure 9.23a [246, 248]). Alternatively,
a synchrotron radiation source, where the emitted radiation power is propor-
tional to the number of stored electrons, has been used. Since the number of
stored electrons can be widely varied from one up to more than 1011, a SPAD can
be calibrated in the single-photon regime without using attenuators [247, 249].
Figure 9.23b depicts the principle of this experiment.
Finally, we note that heralded single photons as generated by parametric down-

conversion can also be used for absolute calibrations of APDs in the few photon
regime [190, 250, 251].
Calibration of a single-photon source based on single NV at room temperature

with respect to its photon flux and spectral photon rate density has recently been
achieved by Rodiek et al. [252].
Presently, a new definition of radiometric or photometric quantities based

on single-photon sources is not considered because quantum radiometry (or
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Figure 9.23 Schematic of two setups used to calibrate single-photon avalanche diodes
(SPADs). (a) Using in situ calibration of neutral density filters and the known radiative power of
a stabilized laser. The Si diode is calibrated, for example, using a cryoradiometer. The
subsequent calibration of the individual filters is required because of their very high
attenuation factor. For the calibration of the SPAD, both filters are applied together. Source:
Kück et al. 2014 [246]. Reproduced with permission of John Wiley & Sons (b) Calibration using
synchrotron radiation. The photon rate (PR Ihigh) in the high ring current range is measured in
the focus of the spectrally filtered synchrotron radiation by a calibrated trap detector using its
known responsivity, Strap(𝜆). In a second step, the count rate of the SPAD is measured in the
low ring current range. The quantum efficiency of the SPAD, QE*SPAD, then can be calculated
using the synchrotron current ratio in the high and low current mode. Source: Müller et al.
2012 [247] and Göbel and Siegner 2015 [9]. Reproduced with permission of John Wiley & Sons.

photometry) is not yet mature for practical applications. However, keeping in
mind the progress that has been made in scaling up the current generated by
single-electron devices (see Chapter 6) and the improvement in the collection
efficiency of single-photon emitters [253], it might be feasible soon.
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10

Outlook

Modern quantum science and technology are employed to link units to the defin-
ing constants of the present SI.The choice of defining constants as the foundation
of the present SI, rather than explicitly defining base units, has created a unit
system that is open to innovation. In the future, any newly discovered physical
phenomenon can be used to realize an SI unit if it establishes a well-understood
relation between a physical quantity and the defining constants of the SI. To
illustrate the advantages of the present SI, we compare it once more to the pre-
vious SI, which was based on explicit definitions of the base units. Some of these
definitions involved a specific subfield of physics, thereby excluding others. For
example, the ampere definition was based on classical electrodynamics, exclud-
ing modern quantum physics from the realization of the electrical units in the
previous SI.
The present SI also promotes innovative applications of quantum standards in

industry. Quantum standards, such as Josephson voltage standards, provide an
intrinsically accurate value of a physical quantity traceable to the SI if they are
operated properly. Traceability to the SI is required by accreditation bodies. It
is usually achieved by the calibration of industry instruments by accredited cal-
ibration laboratories or national metrology institutes. This procedure requires
industry to interrupt the use of their instruments to send them out for calibra-
tion.The use of quantum standards reduces downtime and cost since they do not
require calibration by accredited calibration laboratories or national metrology
institutes. Only regular participation in comparison campaigns is required from
industry to ensure proper operation of their standards. A remaining challenge for
metrology is to bring a larger variety of quantum standards to the “workbench”,
that is, to make them fully accessible to all kind of users and sectors, including
industrial production, health care, environmental protection, and finally regula-
tors and standardization bodies.
First steps have been taken toward this goal. As we have discussed in Chapter 4,

Josephson technology has considerably matured in recent years. Quantum volt-
meters for the audio-frequency range have already been commercialized [1–3].
Josephson technology for more challenging voltage measurements and for other
tasks in electrical metrology, for example, current measurements [4], can be
expected to follow. In general, electrical quantum standards will find wider
applications if they can be operated at higher temperatures. Further progress
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in material science may enable this development, as discussed for the example
of the quantum Hall effect in graphene in Section 5.5. Moreover, new material
classes, such as topological insulators, may allow the operation of quantum
Hall resistors at zero magnetic field, which would also relax the experimental
requirements [5].
Beyond electrical metrology, first steps have been taken to construct a robust

Kibble balance (see Section 7.3), which provides direct traceability to the
defining constants for practical weighing applications over a mass range from
1mg to 1 kg [6]. Moreover, at the time of writing, projects had been started
to investigate the feasibility of practical absolute Johnson noise thermometers
(see Section 8.1.5). In time and frequency metrology, chip-scale thermal atomic
clocks based on microfabricated vapor cells are already commercially available
[7]. Looking beyond the realization of the present SI second, engineering toward
more practical optical clocks has started and a transportable strontium optical
lattice clock was developed [8]. At the time of writing, work toward a robust
single ytterbium ion clock was being pursued, which could be operated for
several days without user interaction [9]. These examples show that practical
quantum technology for measurements on the factory floor has immense
potential encouraged by the innovative character of the present SI.
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